Pandemic 2009 influenza A in Argentina: a study of 337 patients on mechanical ventilation.

Servicio de Terapia Intensiva, Hospital Interzonal de Agudos San Martín de La Plata, La Plata, Buenos Aires, Argentina.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 11.99). 03/2010; 182(1):41-8. DOI: 10.1164/201001-0037OC
Source: PubMed

ABSTRACT The rapid spread of the 2009 Influenza A (H1N1) around the world underscores the need for a better knowledge of epidemiology, clinical features, outcomes, and mortality predictors, especially in the most severe presentations.
To describe these characteristics in patients with confirmed, probable, and suspected viral pneumonia caused by 2009 influenza A (H1N1) admitted to 35 intensive care units with acute respiratory failure requiring mechanical ventilation in Argentina, between June 3 and September 7.
Inception-cohort study including 337 consecutive adult patients. Data were collected in a form posted on the Argentinian Society of Intensive Care website.
Proportions of confirmed, probable, or suspected cases were 39%, 8%, and 53% and had similar outcomes. APACHE II was 18 +/- 7; age 47 +/- 17 years; 56% were male; and 64% had underlying conditions, with obesity (24%), chronic obstructive respiratory disease (18%), and immunosupression (15%) being the most common. Seven percent were pregnant. On admission, patients had severe hypoxemia (Pa(O(2))/Fi(O(2)) 140 [87-200]), extensive lung radiologic infiltrates (2.87 +/- 1.03 quadrants) and bacterial coinfection, (25%; mostly with Streptococcus pneumoniae). Use of adjuvants such as recruitment maneuvers (40%) and prone positioning (13%), and shock (72%) and acute kidney injury requiring hemodialysis (17%), were frequent. Mortality was 46%, and was similar across all ages. APACHE II, lowest Pa(O(2))/Fi(O(2)), shock, hemodialysis, prone positioning, and S. pneumoniae coinfection independently predicted death.
Patients with 2009 influenza A (H1N1) requiring mechanical ventilation were mostly middle-aged adults, often with comorbidities, and frequently developed severe acute respiratory distress syndrome and multiorgan failure requiring advanced organ support. Case fatality rate was accordingly high.

  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Noninvasive ventilation (NIV) is a proved and effective therapeutic option for some patients with respiratory failure. During an epidemic, NIV can free up respirators and other intensive care unit equipment for patients with respiratory insufficiency whose survival depends exclusively on invasive ventilation. Some guidelines have indicated that NIV is potentially hazardous and should not be recommended for use during epidemics, given the perceived potential risk of transmission from aerosolized pathogen dispersion to other patients or medical staff. Conversely, some reports of previous epidemics describe NIV as a very efficient and safe modality of respiratory support, if strict infection control measures are implemented. We discuss NIV use during epidemics and indicate the need for prospective randomized clinical studies on the efficacy of NIV in epidemic conditions to provide important information to the current body of literature. Meanwhile, the use of NIV under strict infection control guidelines should be incorporated into epidemic preparedness planning. (Disaster Med Public Health Preparedness. 2014;8:1-5).
    Disaster Medicine and Public Health Preparedness 09/2014; DOI:10.1017/dmp.2014.71 · 1.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group regarding those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76% of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being the most predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses were observed during the study period. The virological surveillance showed that the majority of the circulating strains during the study period were antigenically related to the corresponding Southern Hemisphere vaccine strains except for the 2012 A(H3N2) viruses.
    Journal of Medical Microbiology 10/2014; DOI:10.1099/jmm.0.076208-0 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: During March 2009 a novel Influenza A virus emerged in Mexico. We describe the clinical picture of the pandemic Influenza A (H1N1) Influenza in cancer patients during the 2009 influenza season. Methods: Twelve centers participated in a multicenter retrospective observational study of cancer patients with confirmed infection with the 2009 H1N1 Influenza A virus (influenza-like illness or pneumonia plus positive PCR for the 2009 H1N1 Influenza A virus in respiratory secretions). Clinical data were obtained by retrospective chart review and analyzed. Results: From May to August 2009, data of 65 patients were collected. Median age was 51 years, 57 % of the patients were female. Most patients (47) had onco-hematological cancers and 18 had solid tumors. Cancer treatment mainly consisted of chemotherapy (46), or stem cell transplantation (SCT) (16). Only 19 of 64 patients had received the 2009 seasonal Influenza vaccine. Clinical presentation included pneumonia (43) and upper respiratory tract infection (22). Forty five of 58 ambulatory patients were admitted. Mechanical ventilation was required in 12 patients (18%). Treatment included oseltamivir monotherapy or in combination with amantadine for a median of 7 days. The global 30-day mortality rate was 18%. All 12 deaths were among the non-vaccinated patients. No deaths were observed among the 19 vaccinated patients. Oxygen saturation <96% at presentation was a predictor of mortality (OR 19.5; 95%CI: 2.28 to 165.9). Conclusions: In our cancer patient population, the pandemic 2009 Influenza A (H1N1) virus was associated with high incidence of pneumonia (66%), and 30-day mortality (18.5%). Saturation <96% was significantly associated with death. No deaths were observed among vaccinated patients.
    09/2014; 3:221. DOI:10.12688/f1000research.5251.1

Full-text (2 Sources)

Available from
Jun 5, 2014