Mitochondrial metabolism modulation: a new therapeutic approach for Parkinson's disease.

Centro de Neurociências e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra, 3004-517 Coimbra, Portugal.
CNS & neurological disorders drug targets (Impact Factor: 3.57). 03/2010; 9(1):105-19.
Source: PubMed

ABSTRACT Mitochondrial metabolism is a highly orchestrated phenomenon in which many enzyme systems cooperate in a variety of pathways to dictate cellular fate. As well as its vital role in cellular energy metabolism (ATP production), mitochondria are powerful organelles that regulate reactive oxygen species production, NAD+/NADH ratio and programmed cell death. In addition, mitochondrial abnormalities have been well recognized to contribute to degenerative diseases, like Parkinson's disease (PD). Particularly a deficiency in the mitochondrial respiratory chain complex I and cristae disruption have been consistently described in PD. Moreover, the products of PD-familial genes, including alpha-synuclein, Parkin, PINK1, DJ-1, LRRK2 and HTR2A, were shown to localize to the mitochondria under certain conditions. It seems that PD has a mitochondrial component so events that would modulate normal mitochondrial functions may compromise neuronal survival. However, it remains an open question whether alterations of these pathways lead to different aspects of PD or whether they converge at a point that is the common denominator of PD pathogenesis. In this review we will focus on mitochondrial metabolic control and its implications on sirtuins activation, microtubule dynamics and autophagic-lysosomal pathway. We will address mitochondrial metabolism modulation as a new promising therapeutic tool for PD.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: We originally discovered TERE1 as a potential tumor suppressor protein based upon reduced expression in bladder and prostate cancer specimens and growth inhibition of tumor cell lines/xenografts upon ectopic expression. Analysis of TERE1 (aka UBIAD1) has shown it is a prenyltransferase enzyme in the natural bio-synthetic pathways for both vitamin K-2 and COQ10 production and exhibits multiple subcellular localizations including mitochondria, endoplasmic reticulum, and golgi. Vitamin K-2 is involved in mitochondrial electron transport, SXR nuclear hormone receptor signaling and redox cycling: together these functions may form the basis for tumor suppressor function. To gain further insight into mechanisms of growth suppression and enzymatic regulation of TERE1 we isolated TERE1 associated proteins and identified the WD40 repeat, mitochondrial protein TBL2. We examined whether disease specific mutations in TERE1 affected interactions with TBL2 and the role of each protein in altering mitochondrial function, ROS/RNS production and SXR target gene regulation. Biochemical binding assays demonstrated a direct, high affinity interaction between TERE1 and TBL2 proteins; TERE1 was localized to both mitochondrial and non-mitochondrial membranes whereas TBL2 was predominantly mitochondrial; multiple independent single amino acid substitutions in TERE1 which cause a human hereditary corneal disease reduced binding to TBL2 strongly suggesting the relevance of this interaction. Ectopic TERE1 expression elevated mitochondrial trans-membrane potential, oxidative stress, NO production, and activated SXR targets. A TERE1-TBL2 complex likely functions in oxidative/nitrosative stress, lipid metabolism, and SXR signaling pathways in its role as a tumor suppressor. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 04/2013; · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial dysfunction is the foremost perpetrator of the nigrostriatal dopaminergic neurodegeneration leading to Parkinson's disease (PD). However, the roles played by majority of the mitochondrial proteins in PD pathogenesis have not yet been deciphered. Present study investigated the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and combined maneb and paraquat on the mitochondrial proteome of the nigrostriatal tissues in the presence or absence of minocycline, levodopa and manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP). The differentially expressed proteins were identified and proteome profiles were correlated with the pathological and biochemical anomalies induced by MPTP and maneb and paraquat. MPTP altered the expression of twelve while combined maneb and paraquat altered the expression of fourteen proteins. Minocycline, levodopa and MnTMPyP, respectively, restored the expression of three, seven and eight proteins in MPTP and seven, eight and eight proteins in maneb- and paraquat-treated groups. Although levodopa and MnTMPyP rescued from MPTP- and maneb- and paraquat-mediated increase in the microglial activation and decrease in Mn-SOD expression and complex I activity, dopamine content and number of dopaminergic neurons, minocycline defended mainly against maneb- and paraquat-mediated alterations. The results demonstrate that MPTP and combined maneb and paraquat induce mitochondrial dysfunction and microglial activation and alter the expression of a bunch of mitochondrial proteins leading to the nigrostriatal dopaminergic neurodegeneration and minocycline, levodopa or MnTMPyP variably offset scores of such changes.
    Biochimica et Biophysica Acta 04/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Parkinson's disease mitochondrial dysfunction can lead to a deficient ATP supply to microtubule protein motors leading to mitochondrial axonal transport disruption. Compromised axonal transport will then lead to a disorganized distribution of mitochondria and other organelles in the cell, as well as, the accumulation of aggregated proteins like alpha-synuclein. Moreover, axonal transport disruption can trigger synaptic accumulation of autophagosomes packed with damaged mitochondria and protein aggregates promoting synaptic failure. We previously observed that neuronal-like cells with an inherent mitochondrial impairment derived from PD patients contain a disorganized microtubule network, as well as, alpha-synuclein oligomers accumulation. In this work we provide new evidence that an agent that promotes microtubule network assembly, NAP (davunetide), improves microtubule-dependent traffic, restores the autophagic flux and potentiates autophasosome-lysosome fusion leading to autophagic vacuole clearance in Parkinson's disease cells. Moreover, NAP is capable of efficiently reduce alpha-synuclein oligomer content and its sequestration by the mitochondria. Most interestingly, NAP decreases mitochondrial ubiquitination levels, as well as, increases mitochondrial membrane potential indicating a rescue in mitochondrial function. Overall, we demonstrate that by improving microtubule-mediated traffic, we can avoid mitochondrial-induced damage and thus recover cell homeostasis. These results prove that NAP may be a promising therapeutic lead candidate for neurodegenerative diseases that involve axonal transport failure and mitochondrial impairment as hallmarks, like Parkinson's disease and related disorders.
    Biochimica et Biophysica Acta 10/2013; · 4.66 Impact Factor