Article

Mechanical Implications of Estrogen Supplementation in Early Postmenopausal Women

Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research (Impact Factor: 6.04). 06/2010; 25(6):1406-14. DOI: 10.1002/jbmr.33
Source: PubMed

ABSTRACT Whereas the structural implications of drug intervention are well established, there are few data on the possible mechanical consequences of treatment. In this work we examined the changes in elastic and shear moduli (EM and SM) in a region of trabecular bone in the distal radius and distal tibia of early postmenopausal women on the basis of MRI-based micro-finite-element (microFE) analysis. Whole-section axial stiffness (AS) encompassing both trabecular and cortical compartments was evaluated as well. The study was conducted on previously acquired high-resolution images at the two anatomic sites. Images were processed to yield a 3D voxel array of bone-volume fraction (BVF), which was converted to a microFE model of hexahedral elements in which tissue modulus was set proportional to voxel BVF. The study comprised 65 early postmenopausal women (age range 45 to 55 years), of whom 32 had chosen estrogen supplementation (estradiol group); the remainder had not (control group). Subjects had been scanned at baseline and 12 and 24 months thereafter. At the distal tibia, EM and SM were reduced by 2.9% to 5.5% in the control group (p < .05 to <.005), but there was no change in the estradiol subjects. AS decreased 3.9% (4.0%) in controls (p < .005) and increased by 5.8% (6.2%) in estradiol group subjects (p < .05) at 12 (24) months. At the distal radius, EM and SM changes from baseline were not significant, but at both time points AS was increased in estradiol group subjects and decreased in controls (p < .005 to <.05), albeit by a smaller margin than at the tibia. EM and SM were strongly correlated with BV/TV (r(2) = 0.44 to 0.92) as well as with topologic parameters expressing the ratio of plates to rods (r(2) = 0.45 to 0.82), jointly explaining up to 96% of the variation in the mechanical parameters. Finally, baseline AS was strongly correlated between the two anatomic sites (r(2) = 0.58), suggesting that intersubject variations in the bone's mechanical competence follows similar mechanisms. In conclusion, the results demonstrate that micro-MRI-based microFE models are suited for the study of the mechanical implications of antiresorptive treatment. The data further highlight the anabolic effect of short-term estrogen supplementation.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review describes new technologies for the diagnosis and treatment, including fracture risk prediction, of postmenopausal osteoporosis. Four promising technologies and their potential for clinical translation and basic science studies are discussed. These include reference point indentation (RPI), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and magnetic resonance imaging (MRI). While each modality exploits different physical principles, the commonality is that none of them require use of ionizing radiation. To provide context for the new developments, brief summaries are provided for the current state of biomarker assays, fracture risk assessment (FRAX), and other fracture risk prediction algorithms and quantitative ultrasound (QUS) measurements.
    Current Osteoporosis Reports 05/2014; 12(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: PurposeTo develop a registration-based autofocusing (RAF) motion correction technique for high-resolution trabecular bone (TB) imaging and to evaluate its performance on in vivo MR data.Materials and Methods The technique combines serial registration with a previously developed motion correction technique — autofocusing — for automatic correction of subject movement degradation of MR images acquired in longitudinal studies. The method was tested on in vivo images of the distal radius to measure improvements in serial reproducibility of parameters in 12 women (ages 50–75 years), and to compare with the navigator echo-based correction and autofocusing. Furthermore, the technique's ability to optimize the sensitivity to detect simulated bone loss was ascertained.ResultsThe new technique yielded superior reproducibility of image-derived structural and mechanical parameters. Average coefficient of variation across all parameters improved by 12.5%, 27.0%, 33.5%, and 37.0%, respectively, following correction by navigator echoes, autofocusing, and the RAF technique (without and with correction for rotational motion); average intra-class correlation coefficient increased by 1.2%, 2.2%, 2.8%, and 3.2%, respectively. Furthermore, simulated bone loss (5%) was well recovered independent of the choice of reference image (4.71% or 4.86% with respect to using either the original or the image subjected to bone loss) in the time series.Conclusion The data suggest that our technique simultaneously corrects for intra-scan motion corruption while improving inter-scan registration. Furthermore, the technique is not biased by small changes in bone architecture between time-points.J. Magn. Reson. Imaging 2014. © 2014 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 05/2014; · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporotic and age-related fractures are a significant public health problem. The current standard of osteoporosis assessment via bone mineral density has been shown to be inadequate for fracture risk predictions highlighting the importance of material composition and structural design of bone in determining skeletal fragility. Bone is a hierarchical material that derives its fracture resistance from various mechanisms that act at length scales ranging from nano- to macroscale. Recent research efforts have focussed on the understanding of bone fracture based on this hierarchical structure to provide a more reliable assessment of fracture risk. Understanding the function, contribution and interaction of each length scale to bone toughness is a crucial step to develop new strategies for fracture risk assessment, fracture prevention, and development of therapeutic interventions for disease and age-related changes in bone. This review presents a hierarchical perspective of bone toughness ranging from nano- to macroscale and reports on the current state of knowledge in the areas of experimental and computational approaches to bone fracture.
    International Materials Reviews 06/2014; 59(5):245-263. · 6.55 Impact Factor

Full-text (2 Sources)

Download
3 Downloads
Available from
Jan 9, 2015