Cholesteryl Ester Transfer Protein Gene Polymorphisms and Longevity Syndrome

1st Cardiology Department, Onassis Cardiac Surgery Center Athens, Greece.
The Open Cardiovascular Medicine Journal 02/2010; 4(1):14-9. DOI: 10.2174/1874192401004010014
Source: PubMed


High levels of high density lipoprotein (HDL) cholesterol are associated with a decreased risk of coronary heart disease (CHD). Subjects with high levels of HDL cholesterol (>70 mg/dl; 1.79 mmol/l) as well as high levels of low density lipoprotein (LDL) cholesterol, could represent a group with longevity syndrome (LS). Since HDL particles are influenced by cholesteryl ester transfer protein (CETP) activity, it is worth studying the CETP polymorphism. The aim of the study was to detect whether 2 genetic variants of the CETP are associated with the LS.
The study population consisted of 136 unrelated men and women with no personal and family history of CHD; 69 met the criteria for LS and 67 did not meet these criteria and had "normal" HDL cholesterol (>40 and <70 mg/dl; >1.03 and <1.79 mmol/l). All patients were genotyped for the TaqIB and I405V polymorphisms.
The B2 allele frequency of TaqIB polymorphism was higher in the LS in comparison with the non-LS group (p=0.03) whereas B1 allele frequency was higher in the non-LS group (p=0.03).
Gene polymorphisms could help decide whether individuals who have increased levels of both LDL cholesterol and HDL cholesterol require treatment. Some of the prerequisites could include that subjects with LS should not only have very high levels of HDL cholesterol but also favorable gene polymorphisms. However, further investigations with a larger sample and including other gene polymorphisms, are needed.

Download full-text


Available from: Katherine K Anagnostopoulou, Oct 05, 2015
23 Reads
  • Source
    • "One of these common polymorphisms is TaqIB, a silent base change affecting the 277th nucleotide in the first intron of the CETP gene [4]. The B2 allele, absence of the TaqI restriction site, has been found to be associated with elevated plasma HDL-C level and reduced plasma CETP mass and activity and coronary heart disease (CHD) risk [9-12], and accordingly to be associated with longer life expectancy [13,14]. This hypothesis is further supported by the fact that high HDL-C levels are often observed in healthy elderly aged 85 and above [13,15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: TaqIB polymorphism in the cholesteryl ester transfer protein (CETP) gene has been reported to be associated with serum high-density lipoprotein cholesterol (HDL-C) levels and longevity in several populations, but controversial results also arose probably due to racial/ethnic diversity. Bama is a remote and mountainous county located in the northwest of Guangxi, People's Republic of China, which has been well known for its longevity for centuries. The current study was to investigate the possible association of CETP TaqIB polymorphism with serum lipid levels and longevity in the Bama Zhuang population. The CETP TaqIB genotypes were determined by polymerase chain reaction and restriction fragment length polymorphism in 523 long-lived inhabitants (long-lived group, LG; aged 90-107 years) and 498 healthy controls without longevity family history (non-long-lived group, non-LG; aged 40-69 years) residing in Bama County. The levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were higher but TG, HDL-C/LDL-C ratio and the prevalence of dyslipidemia were lower in LG than in non-LG (P < 0.001 for all). There were no differences in the allelic and genotypic frequencies between the two groups (P > 0.05). Serum HDL-C levels and HDL-C/LDL-C ratio in LG were different among the genotypes (P < 0.01 for each), the subjects with B2B2 and B1B2 genotyes had higher HDL-C levels and HDL-C/LDL-C ratio than the subjects with B1B1genotye, whereas the levels of TC and HDL-C in non-LG were different among/between the genotypes (P < 0.01 for each), the B2 allele carriers had lower TC and higher HDL-C levels than the B2 allele noncarriers. Serum TG and HDL-C levels and HDL-C/LDL-C ratio were correlated with genotypes in LG, whereas serum TC and HDL-C levels were associated with genotypes in non-LG (P < 0.05-0.001). The association of CETP TaqIB polymorphism and serum lipid profiles is different between LG and non-LG in the Chinese Bama Zhuang population. CETP TaqIB polymorphism might be one of the longevity-related genetic factors in this population.
    Lipids in Health and Disease 02/2012; 11(1):26. DOI:10.1186/1476-511X-11-26 · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The world population is aging and a rapid increase is being seen in the very elderly (aged >80 years). Cholesterol levels in general rise with age and high cholesterol has been associated with extreme longevity. The relationship between lipids and cardiovascular events in the extreme elderly is unclear. A number of genetic factors associated with lipid metabolism have also been described as having potential antiaging roles, including the genes encoding lipoprotein-associated factors - apolipoprotein E and cholesterol ester transfer protein; adipose tissue metabolism - adiponectin, leptin, glycaemia; and blood pressure - angiotensinogen. Clinical trials of lipid-lowering therapies have recruited subgroups of moderately elderly patients, but only the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) trial specifically recruited an elderly population. There is no direct equivalent of the Hypertension in the Very Elderly trial (HYVET) study of antihypertensive patients in the extreme elderly. No heterogeneity has been seen with the effects of statin therapy in the elderly compared with younger age groups on classical cardiovascular endpoints of coronary heart disease and stroke. The optimal cholesterol target, long-term tolerability and the specific effects of statins on other vascular-associated diseases of aging, for example arterial aneurysms, microvascular renal and cerebral disease (dementias), remain to be determined.
    Current opinion in cardiology 07/2011; 26(4):348-55. DOI:10.1097/HCO.0b013e32834659d4 · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our study purpose was to compare a disease-related polygenic profile that combined a total of 62 genetic variants among (i) people reaching exceptional longevity, i.e., centenarians (n = 54, 100-108 years, 48 women) and (ii) ethnically matched healthy controls (n = 87, 19-43 years, 47 women). We computed a 'global' genotype score (GS) for 62 genetic variants (mutations/polymorphisms) related to cardiometabolic diseases, cancer or exceptional longevity, and also specific GS for main disease categories (cardiometabolic risk and cancer risk, including 36 and 24 genetic variations, respectively) and for exceptional longevity (7 genetic variants). The 'global' GS was similar among groups (centenarians: 31.0 ± 0.6; controls 32.0 ± 0.5, P = 0.263). We observed that the GS for hypertension, cancer (global risk), and other types of cancer was lower in the centenarians group compared with the control group (all P < 0.05), yet the difference became non significant after adjusting for sex. We observed significant between-group differences in the frequency of GSTT1 and GSTM1 (presence/absence) genotypes after adjusting for multiple comparisons. The likelihood of having the GSTT1 low-risk (functional) allele was higher in centenarians (odds ratio [OR] 5.005; 95% confidence interval [CI], 1.810-13.839), whereas the likelihood of having the GSTMI low-risk (functional) allele was similar in both groups (OR 1.295; 95% CI, 0.868 -1.931). In conclusion, we found preliminary evidence that Spanish centenarians have a lower genetic predisposition for cancer risk. The wild-type (i.e., functional) genotype of GSTT1, which is associated with lower cancer risk, might be associated with exceptional longevity, yet further studies with larger sample sizes must confirm these findings.
    Age 09/2011; 34(5):1269-83. DOI:10.1007/s11357-011-9296-3 · 3.45 Impact Factor
Show more