Improved pancreatic beta-cell function in type 2 diabetic patients after lifestyle-induced weight loss is related to glucose-dependent insulinotropic polypeptide.

Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, USA.
Diabetes care (Impact Factor: 7.74). 03/2010; 33(7):1561-6. DOI: 10.2337/dc09-2021
Source: PubMed

ABSTRACT Restoration of insulin secretion is critical for the treatment of type 2 diabetes. Exercise and diet can alter glucose-induced insulin responses, but whether this is due to changes in beta-cell function per se is not clear. The mechanisms by which lifestyle intervention may modify insulin secretion in type 2 diabetes have also not been examined but may involve the incretin axis.
Twenty-nine older, obese (aged 65 +/- 1 years; BMI 33.6 +/- 1.0 kg/m(2)) subjects, including individuals with newly diagnosed type 2 diabetes (obese-type 2 diabetic) and individuals with normal glucose tolerance (obese-NGT), underwent 3 months of nutritional counseling and exercise training. beta-Cell function (oral glucose-induced insulin secretion corrected for insulin resistance assessed by hyperinsulinemic-euglycemic clamps) and the role of glucose-dependent insulinotropic polypeptide (GIP) were examined.
After exercise and diet-induced weight loss (-5.0 +/- 0.7 kg), oral glucose-induced insulin secretion was increased in the obese-type 2 diabetic group and decreased in the obese-NGT group (both P < 0.05). When corrected for alterations in insulin resistance, the change in insulin secretion remained significant only in the obese-type 2 diabetic group (1.23 +/- 0.26 vs. 2.04 +/- 0.46 arbitrary units; P < 0.01). Changes in insulin secretion were directly related to the GIP responses to oral glucose (r = 0.64, P = 0.005), which were augmented in the obese-type 2 diabetic group and only moderately suppressed in the obese-NGT group.
After lifestyle-induced weight loss, improvements in oral glucose-induced insulin secretion in older, obese, nondiabetic subjects seem to be largely dependent on improved insulin sensitivity. However, in older obese diabetic patients, improved insulin secretion is a consequence of elevated beta-cell function. We demonstrate for the first time that changes in insulin secretion after lifestyle intervention may be mediated via alterations in GIP secretion from intestinal K-cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The optimal lifestyle intervention that reverses diabetes risk factors is not known. We examined the effect of a low-glycemic index (GI) diet and exercise intervention on glucose metabolism and insulin secretion in obese, prediabetic individuals. Twenty-two participants [mean ± SEM age: 66 ± 1 y; body mass index (in kg/m(2)): 34.4 ± 0.8] underwent a 12-wk exercise-training intervention (1 h/d for 5 d/wk at ≈ 85% of maximum heart rate) while randomly assigned to receive either a low-GI diet (LoGIX; 40 ± 0.3 units) or a high-GI diet (HiGIX; 80 ± 0.6 units). Body composition (measured by using dual-energy X-ray absorptiometry and computed tomography), insulin sensitivity (measured with a hyperinsulinemic euglycemic clamp with [6,6-(2)H(2)]-glucose), and oral glucose-induced insulin and incretin hormone secretion were examined. Both groups lost equal amounts of body weight (-8.8 ± 0.9%) and adiposity and showed similar improvements in peripheral tissue (+76.2 ± 14.9%) and hepatic insulin sensitivity (+27.1 ± 7.1%) (all P < 0.05). However, oral glucose-induced insulin secretion was reduced only in the LoGIX group (6.59 ± 0.86 nmol in the prestudy compared with 4.70 ± 0.67 nmol in the poststudy, P < 0.05), which was a change related to the suppressed postprandial response of glucose-dependent insulinotropic polypeptide. When corrected for changes in β cell glucose exposure, changes in insulin secretion were attenuated in the LoGIX group but became significantly elevated in the HiGIX group. Although lifestyle-induced weight loss improves insulin resistance in prediabetic individuals, postprandial hyperinsulinemia is reduced only when a low-GI diet is consumed. In contrast, a high-GI diet impairs pancreatic β cell and intestinal K cell function despite significant weight loss. These findings highlight the important role of the gut in mediating the effects of a low-GI diet on type 2 diabetes risk reduction.
    American Journal of Clinical Nutrition 10/2010; 92(6):1359-68. · 6.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lifestyle modification, consisting of exercise and weight loss, delays the progression from prediabetes to type 2 diabetes (T2D). However, no study has determined the efficacy of exercise training on glucose metabolism in the different prediabetes subtypes. Seventy-six older (65.1 ± 0.6 years) obese adults with impaired fasting glucose (IFG; n = 12), impaired glucose tolerance (IGT; n = 9) and combined glucose intolerance (IFG + IGT = CGI; n = 22) were compared with normal glucose tolerant (NGT; n = 15) and T2D (n = 18) groups after 12 weeks of exercise training (60 min/day for 5 days/week at ~85% HR(max)). An oral glucose tolerance test was used to assess glucose levels. Insulin sensitivity (IS; euglycaemic hyperinsulinaemic clamp at 40 mU/m(2)/min), β-cell function (glucose-stimulated insulin secretion corrected for IS), body composition (hydrostatic weighing/computed tomography scan) and cardiovascular fitness (treadmill VO(2) max) were also assessed. Exercise training reduced weight and increased cardiovascular fitness (p < 0.05). Exercise training lowered fasting glucose levels in IFG, CGI and T2D (p < 0.05) and 2-h glucose levels in IGT, CGI and T2D (p < 0.05). However, 2-h glucose levels were not normalized in adults with CGI compared with IGT (p < 0.05). β-Cell function improved similarly across groups (p < 0.05). Although not statistically significant, IS increased approximately 40% in IFG and IGT, but only 17% in CGI. The magnitude of improvement in glucose metabolism after 12 weeks of exercise training is not uniform across the prediabetes subtypes. Given the high risk of progressing to T2D, adults with CGI may require more aggressive therapies to prevent diabetes.
    Diabetes Obesity and Metabolism 04/2012; 14(9):835-41. · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion.
    Pharmacognosy research. 01/2013; 5(2):65-70.

Full-text (2 Sources)

Available from
Jun 3, 2014