Article

Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation.

Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Molecular Microbiology (Impact Factor: 5.03). 02/2010; 76(5):1127-41. DOI: 10.1111/j.1365-2958.2010.07092.x
Source: PubMed

ABSTRACT Mycoplasma pneumoniae causes acute and chronic respiratory infections, including tracheobronchitis and community acquired pneumonia, and is linked to asthma and an array of extra-pulmonary disorders. Recently, we identified an ADP-ribosylating and vacuolating toxin of M. pneumoniae, designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we analysed CARDS toxin gene (annotated mpn372) transcription and identified its promoter. We also compared CARDS toxin mRNA and protein profiles in M. pneumoniae during distinct in vitro growth phases. CARDS toxin mRNA expression was maximal, but at low levels, during early exponential growth and declined sharply during mid-to-late log growth phases, which was in direct contrast to other mycoplasma genes examined. Between 7% and 10% of CARDS toxin was localized to the mycoplasma membrane at mid-exponential growth, which was reinforced by immunogold electron microscopy. No CARDS toxin was released into the medium. Upon M. pneumoniae infection of mammalian cells, increased expression of CARDS toxin mRNA was observed when compared with SP-4 broth-grown cultures. Further, confocal immunofluorescence microscopy revealed that M. pneumoniae readily expressed CARDS toxin during infection of differentiated normal human bronchial epithelial cells. Analysis of M. pneumoniae-infected mouse lung tissue revealed high expression of CARDS toxin per mycoplasma cell when compared with M. pneumoniae cells grown in SP-4 medium alone. Taken together, these studies indicate that CARDS toxin expression is carefully controlled by environmental cues that influence its transcription and translation. Further, the acceleration of CARDS toxin synthesis and accumulation in vivo is consistent with its role as a bona fide virulence determinant.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycoplasma pneumoniae causes a range of airway and extrapulmonary pathologies in humans. Clinically, M. pneumoniae is associated with acute exacerbations of human asthma and a worsening of experimentally induced asthma in mice. Recently, we demonstrated that Community Acquired Respiratory Distress Syndrome (CARDS) toxin, an ADP-ribosylating and vacuolating toxin synthesized by M. pneumoniae, is sufficient to induce an asthma-like disease in BALB/cJ mice. To test the potential of CARDS toxin to exacerbate preexisting asthma, we examined inflammatory responses to recombinant CARDS toxin in an ovalbumin (OVA) murine model of asthma. Differences in pulmonary inflammatory responses between treatment groups were analyzed by histology, cell differentials and changes in cytokine and chemokine concentrations. Additionally, assessments of airway hyperreactivity were evaluated through direct pulmonary function measurements. Analysis of histology revealed exaggerated cellular inflammation with a strong eosinophilic component in the CARDS toxin-treated group. Heightened T-helper type-2 inflammatory responses were evidenced by increased expression of IL-4, IL-13, CCL17 and CCL22 corresponding with increased airway hyperreactivity in the CARDS toxin-treated mice. These data demonstrate that CARDS toxin can be a causal factor in the worsening of experimental allergic asthma, highlighting the potential importance of CARDS toxin in the etiology and exacerbation of human asthma.
    PLoS ONE 07/2014; 9(7):e102613. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Community-acquired respiratory distress syndrome (CARDS) toxin from Mycoplasma pneumoniae is a 591 amino acid virulence factor with ADP-ribosyltransferase (ADPRT) and vacuolating activities. It is expressed at low levels during in vitro growth and at high levels during colonization of the lung. Exposure of experimental animals to purified recombinant CARDS toxin alone is sufficient to recapitulate the cytopathology and inflammatory responses associated with M. pneumoniae infection in humans and animals. Here, by molecular modeling, serial truncations and site-directed mutagenesis, we show that the N-terminal region is essential for ADP-ribosylating activity. Also, by systematic truncation and limited proteolysis experiments we identified a portion of the C-terminal region that mediates toxin binding to mammalian cell surfaces and subsequent internalization. In addition, the C-terminal region alone induces vacuolization in a manner similar to full-length toxin. Together, these data suggest that CARDS toxin has a unique architecture with functionally separable N-terminal and C-terminal domains.
    Molecular Microbiology 06/2014; · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycoplasma pneumoniae synthesizes a novel human surfactant protein A (SP-A)-binding cytotoxin, designated community-acquired respiratory distress syndrome (CARDS) toxin, that exhibits ADP-ribosylating and vacuolating activities in mammalian cells and is directly linked to a range of acute and chronic airway diseases, including asthma. In our attempt to detect additional CARDS toxin-binding proteins, we subjected the membrane fraction of human A549 airway cells to affinity chromatography using recombinant CARDS toxin as bait. A 36-kDa A549 cell membrane protein bound to CARDS toxin and was identified by time of flight (TOF) mass spectroscopy as annexin A2 (AnxA2) and verified by immunoblotting with anti-AnxA2 monoclonal antibody. Dose-dependent binding of CARDS toxin to recombinant AnxA2 reinforced the specificity of the interaction, and further studies revealed that the carboxy terminus of CARDS toxin mediated binding to AnxA2. In addition, pretreatment of viable A549 cells with anti-AnxA2 monoclonal antibody or AnxA2 small interfering RNA (siRNA) reduced toxin binding and internalization. Immunofluorescence analysis of CARDS toxin-treated A549 cells demonstrated the colocalization of CARDS toxin with cell surface-associated AnxA2 upon initial binding and with intracellular AnxA2 following toxin internalization. HepG2 cells, which express low levels of AnxA2, were transfected with a plasmid expressing AnxA2 protein, resulting in enhanced binding of CARDS toxin and increased vacuolization. In addition, NCI-H441 cells, which express both AnxA2 and SP-A, upon AnxA2 siRNA transfection, showed decreased binding and subsequent vacuolization. These results indicate that CARDS toxin recognizes AnxA2 as a functional receptor, leading to CARDS toxin-induced changes in mammalian cells.
    mBio 08/2014; 5(4). · 6.88 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
May 17, 2014