Article

Wnt Inhibitory Factor 1 Decreases Tumorigenesis and Metastasis in Osteosarcoma

Department of Oncology, Children's Hospital of Orange County, Orange, California, USA.
Molecular Cancer Therapeutics (Impact Factor: 6.11). 03/2010; 9(3):731-41. DOI: 10.1158/1535-7163.MCT-09-0147
Source: PubMed

ABSTRACT It has been reported that the progression of osteosarcoma was closely associated with the aberrant activation of canonical Wnt signaling. Wnt inhibitory factor-1 (WIF-1) is a secreted Wnt inhibitor whose role in human osteosarcoma remains unknown. In this study, WIF-1 expression in NHOst and osteosarcoma cell lines was determined by real-time reverse transcription-PCR, methylation-specific PCR, and Western blotting analysis. In addition, tissue array from patient samples was examined for WIF-1 expression by immunohistochemistry. Compared with normal human osteoblasts, WIF-1 mRNA and protein levels were significantly downregulated in several osteosarcoma cell lines. The downregulation of WIF-1 mRNA expression is associated with its promoter hypermethylation in these tested cell lines. Importantly, WIF-1 expression was also downregulated in 76% of examined osteosarcoma cases. These results suggest that the downregulation of WIF-1 expression plays a role in osteosarcoma progression. To further study the potential tumor suppressor function of WIF-1 in osteosarcoma, we established stable 143B cell lines overexpressing WIF-1. WIF-1 overexpression significantly decreased tumor growth rate in nude mice as examined by the s.c. injection of 143B cells stably transfected with WIF-1 and vector control. WIF-1 overexpression also markedly reduced the number of lung metastasis in vivo in an orthotopic mouse model of osteosarcoma. Together, these data suggest that WIF-1 exerts potent antiosteosarcoma effect in vivo in mouse models. Therefore, the reexpression of WIF-1 in WIF-1-deficient osteosarcoma represents a potential novel treatment and preventive strategy.

Download full-text

Full-text

Available from: Xiaolin zi, Jan 02, 2014
0 Followers
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt pathway targeting is of high clinical interest for treating bone loss disorders such as osteoporosis. These therapies inhibit the action of negative regulators of osteoblastic Wnt signaling. The report that Wnt inhibitory factor 1 (WIF1) was epigenetically silenced via promoter DNA methylation in osteosarcoma (OS) raised potential concerns for such treatment approaches. Here we confirm that Wif1 expression is frequently reduced in OS. However, we demonstrate that silencing is not driven by DNA methylation. Treatment of mouse and human OS cells showed that Wif1 expression was robustly induced by HDAC inhibition but not by methylation inhibition. Consistent with HDAC dependent silencing, the Wif1 locus in OS was characterized by low acetylation levels and a bivalent H3K4/H3K27-trimethylation state. Wif1 expression marked late stages of normal osteoblast maturation and stratified OS tumors based on differentiation stage across species. Culture of OS cells under differentiation inductive conditions increased expression of Wif1. Together these results demonstrate that Wif1 is not targeted for silencing by DNA methylation in OS. Instead, the reduced expression of Wif1 in OS cells is in context with their stage in differentiation. Copyright © 2014. Published by Elsevier Inc.
    Bone 01/2015; 73. DOI:10.1016/j.bone.2014.12.063 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Osteosarcoma (OS) is the most common bone tumour in children and adolescents. Despite aggressive therapy regimens, treatment outcomes are unsatisfactory. Targeted delivery of drugs can provide higher effective doses at the site of the tumour, ultimately improving the efficacy of existing therapy. Identification of suitable receptors for drug targeting is an essential step in the design of targeted therapy for OS. Methods: We conducted a comparative analysis of the surface proteome of human OS cells and osteoblasts using cell surface biotinylation combined with nano-liquid chromatography – tandem mass spectrometry-based proteomics to identify surface proteins specifically upregulated on OS cells. This approach generated an extensive data set from which we selected a candidate to study for its suitability as receptor for targeted treatment delivery to OS. First, surface expression of the ephrin type-A receptor 2 (EPHA2) receptor was confirmed using FACS analysis. Ephrin type-A receptor 2 expression in human tumour tissue was tested using immunohistochemistry. Receptor targeting and internalisation studies were conducted to assess intracellular uptake of targeted modalities via EPHA2. Finally, tissue micro arrays containing cores of human OS tissue were stained using immunohistochemistry and EPHA2 staining was correlated to clinical outcome measures. Results: Using mass spectrometry, a total of 2841 proteins were identified of which 156 were surface proteins significantly upregulated on OS cells compared with human primary osteoblasts. Ephrin type-A receptor 2 was highly upregulated and the most abundant surface protein on OS cells. In addition, EPHA2 was expressed in a vast majority of human OS samples. Ephrin type-A receptor 2 effectively mediates internalisation of targeted adenoviral vectors into OS cells. Patients with EPHA2-positive tumours showed a trend toward inferior overall survival. Conclusion: The results presented here suggest that the EPHA2 receptor can be considered an attractive candidate receptor for targeted delivery of therapeutics to OS.
    British Journal of Cancer 09/2013; 109(8). DOI:10.1038/bjc.2013.578 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
    Therapeutic advances in musculoskeletal disease 02/2013; 5(1):13-31. DOI:10.1177/1759720X12466608