Article

Association of Enhanced Limbic Response to Threat With Decreased Cortical Facial Recognition Memory Response in Schizophrenia

Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
American Journal of Psychiatry (Impact Factor: 13.56). 03/2010; 167(4):418-26. DOI: 10.1176/appi.ajp.2009.09060808
Source: PubMed

ABSTRACT Recognition memory of faces is impaired in patients with schizophrenia, as is the neural processing of threat-related signals, but how these deficits interact to produce symptoms is unclear. The authors used an affective face recognition paradigm to examine possible interactions between cognitive and affective neural systems in schizophrenia.
Blood-oxygen-level-dependent response was examined by means of functional magnetic resonance imaging (3 Tesla) in healthy comparison subjects (N=21) and in patients with schizophrenia (N=12) or schizoaffective disorder, depressed type (N=4), during a two-choice recognition task that used images of human faces. Each target face, previously displayed with a threatening or nonthreatening affect, was displayed with neutral affect. Responses to successful recognition and responses to the effect of previously threatening versus nonthreatening affect were evaluated, and correlations with symptom severity (total Brief Psychiatric Rating Scale score) were examined. Functional connectivity analyses examined the relationship between activation in the amygdala and cortical regions involved in recognition memory.
Patients performed the task more slowly than healthy comparison subjects. Comparison subjects recruited the expected cortical regions to a greater degree than patients, and patients with more severe symptoms demonstrated proportionally less recruitment. Increased symptoms were also correlated with augmented amygdala and orbitofrontal cortex response to threatening faces. Comparison subjects exhibited a negative correlation between activity in the amygdala and cortical regions involved in cognition, while patients showed weakening of this relationship.
Increased symptoms were related to an enhanced threat response in limbic regions and a diminished recognition memory response in cortical regions, supporting a link between these two brain systems that are often examined in isolation. This finding suggests that abnormal processing of threat-related signals in the environment may exacerbate cognitive impairment in schizophrenia.

Full-text

Available from: Jeffrey N Valdez, Jun 09, 2015
0 Followers
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Self-concept is deeply affected in schizophrenia. Positive symptoms in particular are related to disturbed self/other distinctions. The neural networks underlying self-evaluation in schizophrenia have barely been investigated. The study reported here involved 13 patients with schizophrenia and 13 matched controls. During functional MRI, participants decided in three conditions whether the presented positive and negative personality traits characterized themselves, an intimate person, or included a certain letter. Based on the responses, each experimental condition was designed using a flexible factorial model. Controls and patients showed a similar behavioral pattern during self-evaluation, with group comparison revealing decreased activation in patients in the left inferior temporal gyrus and both temporal poles during self-ascription of traits, and in the anterior medial prefrontal cortex during evaluation of an intimate person. In patients, positive symptoms correlated positively with brain activation in the left parahippocampus during trait self-ascription. Hence, while evaluating themselves, schizophrenia patients revealed decreased activation in areas related to self-awareness overlapping with networks involved in theory of mind, empathy and social knowledge. Moreover, patients' brain activation during self-reflection was affected by the current positive symptomatology. The close interaction between self and other highlights the clinical and social relevance of self-processing deficits in schizophrenia.
    Social Cognitive and Affective Neuroscience 12/2013; DOI:10.1093/scan/nst174 · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human brain processes information via multiple distributed networks. An accurate model of the brain's functional connectome is critical for understanding both normal brain function as well as the dysfunction present in neuropsychiatric illnesses. Current methodologies that attempt to discover the organization of the functional connectome typically assume spatial or temporal separation of the underlying networks. This assumption deviates from an intuitive understanding of brain function, which is that of multiple, inter-dependent spatially overlapping brain networks that efficiently integrate information pertinent to diverse brain functions. It is now increasingly evident that neural systems use parsimonious formations and functional representations to efficiently process information while minimizing redundancy. Hence we exploit recent advances in the mathematics of sparse modeling to develop a methodological framework aiming to understand complex resting-state fMRI connectivity data. By favoringnetworks that explain the data via a relatively small number of participating brain regions, we obtain a parsimonious representation of brain function in terms of multiple "Sparse Connectivity Patterns" (SCPs), such that differential presence of these SCPs explains inter-subject variability. In this manner the sparsity-based framework can effectively capture the heterogeneity of functional activity patterns across individuals while potentially highlighting multiple sub-populations within the data that display similar patterns. Our results from simulated as well as real resting state fMRI data show that SCPs are accurate and reproducible between sub-samples as well as across datasets. These findings substantiate existing knowledge of intrinsic functional connectivity and provide novel insights into the functional organization of the human brain.
    NeuroImage 10/2014; 105. DOI:10.1016/j.neuroimage.2014.09.058 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia cases have been consistently shown to have behavioural and neurofunctional abnormalities but studies during early course are scarce. The present work assesses the performance of acute first episode schizophrenia cases on correlation of a facial emotion perception task with brain function using fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET).
    Schizophrenia Research 02/2015; 162(1-3). DOI:10.1016/j.schres.2015.01.028 · 4.43 Impact Factor