Tecovirimat, a p37 envelope protein inhibitor for the treatment of smallpox infection

Katholieke Universiteit Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, 3000 Leuven, Belgium.
IDrugs: the investigational drugs journal (Impact Factor: 2.33). 03/2010; 13(3):181-91.
Source: PubMed


Since the eradication of naturally occurring smallpox in 1980, the fear that variola virus could be used as a biological weapon has become real. Over the last 10 years, emergency preparedness programs have been launched to protect populations against a smallpox outbreak or the possible emergence in humans of other orthopoxvirus infections, such as monkeypox. Vaccination against smallpox was responsible for its eradication, but was linked with high rates of adverse events and contraindications. In this context, intensive research in the poxvirus field has led to the development of safer vaccines and to an increase in the number of anti-poxvirus agents in the pipeline. SIGA Technologies Inc, under license from ViroPharma Inc, is developing tecovirimat (ST-246). Tecovirimat is a novel antiviral that inhibits the egress of orthopoxviruses by targeting viral p37 protein orthologs. The development of tecovirimat during the last 5 years for the treatment of smallpox and for its potential use as adjunct to smallpox vaccine is reviewed here.

16 Reads
  • Source
    • "ST-246 prevents formation of a wrapping complex required for production of egress competent virus particles by inhibiting interaction of p37 with components of late endosomal transport vesicle biogenesis (Chen et al., 2009). The compound is orally bioavailable and protects multiple animal species from lethal orthopoxvirus challenge (Duraffour et al., 2007, 2010; Quenelle et al., 2007; Smith et al., 2009, 2011). Human clinical trials have shown that ST-246 is safe and well tolerated in healthy human volunteers with pharmacokinetic parameters consistent with once per day dosing (Jordan et al., 2008, 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cantagalo virus (CTGV) is the etiologic agent of a pustular disease in dairy cows and dairy workers in Brazil with important economical and occupational impacts. Nevertheless, no antiviral therapy is currently available. ST-246 is a potent inhibitor of orthopoxvirus egress from cells and has proved its efficacy in cell culture and in animal models. In this work, we evaluated the effect of ST-246 on CTGV replication. Plaque reduction assays indicated that CTGV is 6 to 38 times more susceptible to the drug than VACV-WR and cowpox virus, respectively, with an EC(50) of 0.0086 μM and a selective index of >11,600. The analysis of β-gal activity expressed by recombinant viruses in the presence of ST-246 confirmed these results. In addition, ST-246 had a greater effect on the reduction of CTGV spread in comet tail assays and on the production of extracellular virus relative to VACV-WR. Infection of mice with CTGV by tail scarification generated primary lesions at the site of scarification that appeared less severe than those induced by VACV-WR. Animals infected with CTGV and treated with ST-246 at 100 mg/kg for 5 days did not develop primary lesions and virus yields were inhibited by nearly 98%. In contrast, primary lesions induced by VACV-WR were not affected by ST-246. The analysis of F13 (p37) protein from CTGV revealed a unique substitution in residue 217 (D217N) not found in other orthopoxviruses. Construction of recombinant VACV-WR containing the D217N polymorphism did not lead to an increase in the susceptibility to ST-246. Therefore, it is still unknown why CTGV is more susceptible to the antiviral effects of ST-246 compared to VACV-WR. Nonetheless, our data demonstrates that ST-246 is a potent inhibitor of CTGV replication that should be further evaluated as a promising anti-CTGV therapy.
    Antiviral research 12/2012; 97(3). DOI:10.1016/j.antiviral.2012.11.010 · 3.94 Impact Factor
  • Source
    • "Also, several inhibitors of viral DNA polymerase, such as the acyclic nucleoside phosphonate HPMPC [cidofovir or Vistide®, (S)-1-(3-hydroxy-2-phosphoylmethoxypropyl)cytosine] and the 2,6-diaminopurine analog HPMPDAP, have shown potent antiviral activities against CMLV replication in vitro [28]. Also, ST-246, HPMPC and CMX-001 (hexadecyloxypropyl-HPMPC) are currently recognized as potent inhibitors of OPVs in vivo, as demonstrated in various animal models [29], [30]. ST-246 and CMX-001 are orally available and HPMPC requires intravenous administration. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Camelpox virus (CMLV) is the closest known orthopoxvirus genetically related to variola virus. So far, CMLV was restricted to camelids but, recently, three human cases of camelpox have been described in India, highlighting the need to pursue research on its pathogenesis, which has been hampered by the lack of small animal models. Here, we confirm that NMRI immunocompetent mice are resistant to intranasal (i.n.) CMLV infection. However, we demonstrate that CMLV induced a severe disease following i.n. challenge of athymic nude mice, which was accompanied with a failure in gaining weight, leading to euthanasia of the animals. On the other hand, intracutaneous (i.c.) infection resulted in disease development without impacting the body weight evolution. CMLV replication in tissues and body fluids was confirmed in the two models. We further analyzed innate immune and B cell responses induced in the spleen and draining lymph nodes after exposure to CMLV. In both models, strong increases in CD11b(+)F4/80(+) macrophages were seen in the spleen, while neutrophils, NK and B cell responses varied between the routes of infection. In the lymph nodes, the magnitude of CD11c(+)CD8α(+) lymphoid and CD11c(+)CD11b(+) myeloid dendritic cell responses increased in i.n. challenged animals. Analysis of cytokine profiles revealed significant increases of interleukin (IL)-6 and IL-18 in the sera of infected animals, while those of other cytokines were similar to uninfected controls. The efficacy of two antivirals (cidofovir or HPMPC, and its 2, 6-diaminopurine analog) was evaluated in both models. HPMPC was the most effective molecule affording 100% protection from morbidity. It appeared that both treatments did not affect immune cell responses or cytokine expression. In conclusion, we demonstrated that immunodeficient mice are permissive for CMLV propagation. These results provide a basis for studying the pathogenesis of CMLV, as well as for evaluating potential antiviral therapies in an immunodeficiency context.
    PLoS ONE 06/2011; 6(6):e21561. DOI:10.1371/journal.pone.0021561 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The poxvirus vaccinia virus (VV) served as the model virus for which the first antivirals, the thiosemicarbazones, were identified. This dates back to 1950; and, although there is at present no single antiviral drug specifically licensed for the chemotherapy or -prophylaxis of poxvirus infections, numerous candidate compounds have been described over the past 50 years. These compounds include interferon and inducers thereof (i.e., polyacrylic acid), 5-substituted 2'-deoxyuridines (i.e., idoxuridine), IMP dehydrogenase inhibitors, S-adenosylhomocysteine hydrolase inhibitors, acyclic nucleoside phosphonates (such as cidofovir) and alkoxyalkyl prodrugs thereof (such as CMX001), viral egress inhibitors (such as tecovirimat), and cellular kinase inhibitors (such as imatinib).
    Viruses 06/2010; 2(6):1322-39. DOI:10.3390/v2061322 · 3.35 Impact Factor
Show more