Corrigendum: Systems survey of endocytosis by multiparametric image analysis

Max Planck Institute for Molecular Cell Biology and Genetics, Germany.
Nature (Impact Factor: 41.46). 02/2010; 464(7286):243-9. DOI: 10.1038/nature08779
Source: PubMed


Endocytosis is a complex process fulfilling many cellular and developmental functions. Understanding how it is regulated and integrated with other cellular processes requires a comprehensive analysis of its molecular constituents and general design principles. Here, we developed a new strategy to phenotypically profile the human genome with respect to transferrin (TF) and epidermal growth factor (EGF) endocytosis by combining RNA interference, automated high-resolution confocal microscopy, quantitative multiparametric image analysis and high-performance computing. We identified several novel components of endocytic trafficking, including genes implicated in human diseases. We found that signalling pathways such as Wnt, integrin/cell adhesion, transforming growth factor (TGF)-beta and Notch regulate the endocytic system, and identified new genes involved in cargo sorting to a subset of signalling endosomes. A systems analysis by Bayesian networks further showed that the number, size, concentration of cargo and intracellular position of endosomes are not determined randomly but are subject to specific regulation, thus uncovering novel properties of the endocytic system.

Download full-text


Available from: Fava Eugenio, Oct 29, 2015
    • "Driven by advances in microscopic technologies and the increasing availability of fluorescence microscopy, cell biology and genetics have benefited substantially from the observation of cell and organelle morphology. Indeed, automated image acquisition systems in microscopy and image-analysis technologies have recently been developed for the high-dimensional phenotyping of many model organisms (Collinet et al., 2010; Neumann et al., 2010; Sozzani and Benfey, 2011; Pardo- Martin et al., 2013). Since the development of high-throughput microscopy (Rimon and Schuldiner, 2011; Tkach et al., 2012), methods to reinforce the automated image acquisition of subcellular structures have been sought in cell biology to better understand the complex cellular processes in eukaryotic cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast.
    Molecular Biology of the Cell 11/2015; 26(22):3920-3925. DOI:10.1091/mbc.E15-07-0466 · 4.47 Impact Factor
  • Source
    • "Interestingly, a functional genomics screen revealed that the endosomal system is modulated by a number of metabolic pathways, including glycolysis, gluconeogenesis, and steroid biosynthesis (Collinet et al., 2010). This argues that the functional relationship between metabolism and endocytosis is bi-directional . "
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver maintains glucose and lipid homeostasis by adapting its metabolic activity to the energy needs of the organism. Communication between hepatocytes and extracellular environment via endocytosis is key to such homeostasis. Here, we addressed the question of whether endosomes are required for gluconeogenic gene expression. We took advantage of the loss of endosomes in the mouse liver upon Rab5 silencing. Strikingly, we found hepatomegaly and severe metabolic defects such as hypoglycemia, hypercholesterolemia, hyperlipidemia, and glycogen accumulation that phenocopied those found in von Gierke's disease, a glucose-6-phosphatase (G6Pase) deficiency. G6Pase deficiency alone can account for the reduction in hepatic glucose output and glycogen accumulation as determined by mathematical modeling. Interestingly, we uncovered functional alterations in the transcription factors, which regulate G6Pase expression. Our data highlight a requirement of Rab5 and the endosomal system for the regulation of gluconeogenic gene expression that has important implications for metabolic diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; 11(6). DOI:10.1016/j.celrep.2015.04.018 · 8.36 Impact Factor
  • Source
    • "However, we did not find any significant effect of PLCG1 knockdown on the number of transferrin receptor–containing endosomes (Supplemental Figure S6A). The number of endosomes has been used to infer effects on the endocytic system (Collinet et al., 2010). In addition, searching the endosomics database (endosomics "
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here, we used a siRNA screen monitoring effects on structure of the Golgi apparatus and on cell migration. Two major Golgi phenotypes were observed, fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C gamma1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently from its catalytic activity, but in a manner dependent on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration. © 2015 by The American Society for Cell Biology.
    Molecular biology of the cell 04/2015; 26(12). DOI:10.1091/mbc.E15-03-0178 · 4.47 Impact Factor
Show more