Intervention of Bro1 in pH-responsive Rim20 localization in Saccharomyces cerevisiae.

Department of Microbiology, Columbia University, New York, New York 10032, USA.
Eukaryotic Cell (Impact Factor: 3.18). 02/2010; 9(4):532-8. DOI: 10.1128/EC.00027-10
Source: PubMed

ABSTRACT Yeast cells contain two Bro1 domain proteins: Bro1, which is required for endosomal trafficking, and Rim20, which is required for the response to the external pH via the Rim101 pathway. Rim20 associates with endosomal structures under alkaline growth conditions, when it promotes activation of Rim101 through proteolytic cleavage. We report here that the pH-dependent localization of Rim20 is contingent on the amount of Bro1 in the cell. Cells that lack Bro1 have increased endosomal Rim20-green fluorescent protein (GFP) under acidic conditions; cells that overexpress Bro1 have reduced endosomal Rim20-GFP under acidic or alkaline conditions. The novel endosomal association of Rim20-GFP in the absence of Bro1 requires ESCRT components including Vps27 but not specific Rim101 pathway components such as Dfg16. Vps27 influences the localization of Bro1 but is not required for RIM101 pathway activation in wild-type cells, thus suggesting that Rim20 enters the Bro1 localization pathway when a vacancy exists. Despite altered localization of Rim20, the lack of Bro1 does not bypass the need for signaling protein Dfg16 to activate Rim101, as evidenced by the expression levels of the Rim101 target genes RIM8 and SMP1. Therefore, endosomal association of Rim20 is not sufficient to promote Rim101 activation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rim101/PacC pathway governs adaptation to alkaline pH in many fungi. Output of the pathway is mediated by transcription factors of the Rim101/PacC family, which are activated by proteolytic cleavage. The proteolytic complex includes scaffold protein Rim20 and endosome-associated subunits of the endosomal sorting complex required for transport (ESCRT). We provide here evidence that Saccharomyces cerevisiae Rim13, the protease that is implicated in Rim101 cleavage, is associated with the Rim20-ESCRT complex, and we investigate its regulation. Rim13-GFP is dispersed in cells grown in acidic medium but forms punctate foci when cells encounter alkaline conditions. A vps4Δ mutant, which accumulates elevated levels of endosomal ESCRT, also accumulates elevated levels of Rim13-GFP foci, independently of external pH. In the vps4Δ background, mutation of ESCRT subunit Snf7 or of Rim20 blocks the formation of Rim13 foci, and we found that Rim13 and Rim20 are colocalized. The Rim13 ortholog PalB of Aspergillus nidulans has been shown to undergo ESCRT and membrane association through an N-terminal MIT domain, but Rim13 orthologs in the Saccharomyces clade lack homology to this N-terminal region. Instead, there is a clade-limited C-terminal region, and we show that point mutations in this region prevent punctate localization and impair Rim13 function. We suggest that RIM13 arose from its ancestral gene through two genome rearrangements. The ancestor lost the coding region for its MIT domain through a 5' rearrangement and acquired the coding region for the Saccharomyces-specific functional equivalent through a 3' rearrangement.
    Eukaryotic Cell 08/2012; 11(10):1201-9. DOI:10.1128/EC.00158-12 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fungal pal/RIM signalling pathway, which regulates gene expression in response to environmental pH involves, in addition to dedicated proteins, several components of ESCRT complexes, which suggested that pH signalling proteins assemble on endosomal platforms. In Aspergillus nidulans, dedicated Pal proteins include the plasma membrane receptor PalH and its coupled arrestin, PalF, which becomes ubiquitylated in alkaline pH conditions, and three potentially endosomal ESCRT-III associates, including Vps32 interactors PalA and PalC and Vps24 interactor calpain-like PalB. We studied the subcellular locations at which signalling takes place after activating the pathway by shifting ambient pH to alkalinity. Rather than localising to endosomes, Vps32 interactors PalA and PalC transiently colocalise at alkaline-pH-induced cortical structures in a PalH-, Vps23- and Vps32-dependent but Vps27-independent manner. These cortical structures are much more stable when Vps4 is deficient, indicating that their half-life depends on ESCRT-III disassembly. Pull-down studies revealed that Vps23 interacts strongly with PalF, but co-immunoprecipitates exclusively with ubiquitylated PalF forms from extracts. We demonstrate that Vps23-GFP, expressed at physiological levels, is also recruited to cortical structures, very conspicuous in vps27Δ cells in which the prominent signal of Vps23-GFP on endosomes is eliminated, in a PalF- and alkaline pH-dependent manner. Dual-channel epifluorescence microscopy showed that PalC arrives at cortical complexes before PalA. As PalC recruitment is PalA independent and PalA recruitment is PalC dependent but PalB independent, these data complete the participation order of Pal proteins in the pathway and strongly support a model in which pH signalling takes place in ESCRT-containing, plasma-membrane-associated, rather than endosome-associated, complexes.
    Journal of Cell Science 02/2012; 125(Pt 7):1784-95. DOI:10.1242/jcs.098897 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The four protein complexes termed endosomal sorting complexes required for transport (ESCRT) are key mediators of multivesicular body sorting/formation, retroviral budding and cell abscission, which share a membrane deformation process with the same topological change: vesicles budding away from the cytoplasm. Independent studies of the signal transduction pathways that mediate ambient pH sensing and adaptation in yeast and fungi revealed that these pathways share a conserved signaling mechanism that utilizes ESCRT complexes for its activation. This pathway in Saccharomyces cerevisiae, termed the Rim101 pathway, consists of both a sensing complex, which senses ambient alkaline pH, and a proteolytic complex, which proteolyzes and thereby activates the key transcription factor Rim101. Since the proteolytic complex is thought to be formed and activated on a platform of a multimerized ESCRT-III component Snf7, the organization, regulation and function of this pathway are dependent on the function of ESCRT complexes.
    FEBS Journal 02/2012; 279(8):1407-13. DOI:10.1111/j.1742-4658.2012.08548.x · 3.99 Impact Factor


1 Download
Available from