Article

11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study.

Turku PET Centre and Clinical Research Services Turku, University of Turku and Turku University Hospital, Turku, Finland.
The Lancet Neurology (Impact Factor: 21.82). 02/2010; 9(4):363-72. DOI: 10.1016/S1474-4422(10)70043-0
Source: PubMed

ABSTRACT Carbon-11-labelled Pittsburgh compound B ((11)C-PiB) PET is a marker of cortical fibrillar amyloid-beta load in vivo. We used (11)C-PiB PET to investigate whether bapineuzumab, a humanised anti-amyloid-beta monoclonal antibody, would reduce cortical fibrillar amyloid-beta load in patients with Alzheimer's disease.
Patients with mild-to-moderate Alzheimer's disease were randomly assigned to receive intravenous bapineuzumab or placebo in a ratio of seven to three in three ascending dose groups (0.5, 1.0, or 2.0 mg/kg). Each dose group was enrolled after safety review of the previous group. Randomisation was by interactive voice response system; masking was achieved with numbered kit allocation. Patients, investigators, study site personnel, sponsor staff, and carers were masked to treatment. Patients received up to six infusions, 13 weeks apart, and had (11)C-PiB PET scans at baseline and at weeks 20, 45, and 78. The primary outcome was the difference between the pooled bapineuzumab group and the pooled placebo group in mean change from screening to week 78 in (11)C-PiB cortical to cerebellar retention ratio averaged across six cortical regions of interest. Analysis was by modified intention to treat. This study is registered with EudraCT, number 2004-004120-12; ISRCTN17517446.
28 patients were assigned to bapineuzumab (n=20) or placebo (n=8). 19 patients in the bapineuzumab group and seven in the placebo group were included in the modified intention-to-treat analysis. Estimated mean (11)C-PiB retention ratio change from baseline to week 78 was -0.09 (95% CI -0.16 to -0.02; p=0.014) in the bapineuzumab group and 0.15 (95% CI 0.02 to 0.28; p=0.022) in the placebo group. Estimated mean difference in (11)C-PiB retention ratio change from baseline to week 78 between the bapineuzumab group and the placebo group was -0.24 (95% CI -0.39 to -0.09; p=0.003). Differences between the bapineuzumab group and the placebo group in the individual regions of interest were similar to the overall mean difference. Adverse events were typically mild to moderate in severity and transient. Two patients in the 2.0 mg/kg bapineuzumab group had transient cerebral vasogenic oedema.
Treatment with bapineuzumab for 78 weeks reduced cortical (11)C-PiB retention compared with both baseline and placebo. (11)C-PiB PET seems to be useful in assessing the effects of potential Alzheimer's disease treatments on cortical fibrillar amyloid-beta load in vivo.
Elan Pharmaceuticals and Wyeth Research.

1 Follower
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the need to develop a successful disease-modifying treatment for Alzheimer’s disease (AD) becomes more urgent, imaging is increasingly used in therapeutic trials. We provide an overview of how the different imaging modalities are used in AD studies and the current regulatory guidelines for their use in clinical trials as endpoints. We review the current literature for results of imaging endpoints of efficacy and safety in published clinical trials. We start with trials in mild to moderate AD, where imaging (largely magnetic resonance imaging (MRI)) has long played a role in inclusion and exclusion criteria; more recently, MRI has been used to identify adverse events and to measure rates of brain atrophy. The advent of amyloid imaging using positron emission tomography has led to trials incorporating amyloid measurements as endpoints and incidentally to the recognition of the high proportion of amyloid-negative individuals that may be recruited into these trials. Ongoing and planned trials now commonly include multimodality imaging: amyloid positron emission tomography, MRI and other modalities. At the same time, the failure of recent large profile trials in mild to moderate AD together with the realisation that there is a long prodromal period to AD has driven a push to move studies to earlier in the disease. Imaging has particularly important roles, alongside other biomarkers, in assessing efficacy because conventional clinical outcomes may have limited ability to detect treatment effects in these early stages. Electronic supplementary material The online version of this article (doi:10.1186/s13195-014-0087-9) contains supplementary material, which is available to authorized users.
    Alzheimer's Research and Therapy 12/2014; 6(9):87. DOI:10.1186/s13195-014-0087-9 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is an emerging global epidemic. It is characterized by an imbalance between production and clearance of amyloid β (Aβ) and tau proteins. Oligomeric forms of Aβ and tau are believed to be the most toxic. Dramatic results from AD animal models showed great promise for active and passive immune therapies targeting Aβ. However, there is very limited evidence in human studies of the clinical benefits from these approaches. Immunotherapies targeting only tau pathology have had some success but are limited so far to mouse models. The majority of current methods is based on immunological targeting of a self-protein; hence, benefits need to be balanced against risks of stimulating excessive autoimmune toxic inflammation. For greater efficacy the next generation of vaccines needs to focus more on concurrently targeting all the intermediate toxic conformers of oligomeric Aβ and tau species. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 03/2015; 85(6):1162-1176. DOI:10.1016/j.neuron.2014.12.064 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of the Fc-inactivated anti-β amyloid (Aβ) monoclonal antibody (mAb) GSK933776 in patients with mild Alzheimer's disease (AD) or mild cognitive impairment (MCI). This was a two-part, single blind, placebo-controlled, first-time-in-human (FTIH) study of single (n = 18) and repeat dose (n = 32) intravenous GSK933776 0.001-6 mg/kg (ClinicalTrials.gov: NCT00459550). Additional safety data from an open-label, uncontrolled, single dose study of intravenous GSK933776 1-6 mg/kg (n = 18) are included (ClinicalTrials.gov: NCT01424436). There were no cases of amyloid-related imaging abnormalities-edema (ARIA-E) or -hemorrhage (ARIA-H) after GSK933776 administration in both studies. Three patients across the two studies developed anti-GSK933776 antibodies. Plasma GSK933776 half-life (t1/2) was 10-15 days after repeat dosing. After each of three administrations of GSK933776, plasma levels of total Aβ42 and Aβ increased whereas plasma levels of free Aβ decreased dose dependently; no changes were observed for placebo. For total Aβ42 the peak:trough ratio was ≤2 at doses ≥3 mg/kg; for total Aβ the ratio was ≤2 at 6 mg/kg. CSF concentrations of Aβ showed increases from baseline to week 12 for Aβ X-38 (week 12:baseline ratio: 1.65; 95%CI: 1.38, 1.93) and Aβ X-42 (week 12:baseline ratio: 1.18; 95%CI: 1.06, 1.30) for values pooled across doses. In this FTIH study the Fc-inactivated anti-Aβ mAb GSK933776 engaged its target in plasma and CSF without causing brain ARIA-E/H in patients with mild AD or MCI. ClinicalTrials.gov NCT00459550.
    PLoS ONE 01/2015; 10(3):e0098153. DOI:10.1371/journal.pone.0098153 · 3.53 Impact Factor