Article

Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits.

Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Neuron (Impact Factor: 15.77). 02/2010; 65(4):480-9. DOI: 10.1016/j.neuron.2010.01.019
Source: PubMed

ABSTRACT Adult brain function and behavior are influenced by neuronal network formation during development. Genetic susceptibility factors for adult psychiatric illnesses, such as Neuregulin-1 and Disrupted-in-Schizophrenia-1 (DISC1), influence adult high brain functions, including cognition and information processing. These factors have roles during neurodevelopment and are likely to cooperate, forming pathways or "signalosomes." Here we report the potential to generate an animal model via in utero gene transfer in order to address an important question of how nonlethal deficits in early development may affect postnatal brain maturation and high brain functions in adulthood, which are impaired in various psychiatric illnesses such as schizophrenia. We show that transient knockdown of DISC1 in the pre- and perinatal stages, specifically in a lineage of pyramidal neurons mainly in the prefrontal cortex, leads to selective abnormalities in postnatal mesocortical dopaminergic maturation and behavioral abnormalities associated with disturbed cortical neurocircuitry after puberty.

1 Bookmark
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal development can lead to deficits in adult brain function, a trajectory likely underlying adolescent-onset psychiatric conditions such as schizophrenia. Developmental manipulations yielding adult deficits in rodents provide an opportunity to explore mechanisms involved in a delayed emergence of anomalies driven by developmental alterations. Here we assessed whether oxidative stress during presymptomatic stages causes adult anomalies in rats with a neonatal ventral hippocampal lesion, a developmental rodent model useful for schizophrenia research. Juvenile and adolescent treatment with the antioxidant N-acetyl cysteine prevented the reduction of prefrontal parvalbumin interneuron activity observed in this model, as well as electrophysiological and behavioral deficits relevant to schizophrenia. Adolescent treatment with the glutathione peroxidase mimic ebselen also reversed behavioral deficits in this animal model. These findings suggest that presymptomatic oxidative stress yields abnormal adult brain function in a developmentally compromised brain, and highlight redox modulation as a potential target for early intervention.
    Neuron 08/2014; 83(5). DOI:10.1016/j.neuron.2014.07.028 · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mesofrontal dopaminergic circuit, which connects the midbrain motivation center to the cortical executive center, is engaged in control of motivated behaviors. In addition, deficiencies in this circuit are associated with adolescent-onset psychiatric disorders in humans. Developmental studies suggest that the mesofrontal circuit exhibits a protracted maturation through adolescence. However, whether the structure and function of this circuit are modifiable by activity in dopaminergic neurons during adolescence remains unknown. Using optogenetic stimulation and in vivo two-photon imaging in adolescent mice, we found that phasic, but not tonic, dopamine neuron activity induces the formation of mesofrontal axonal boutons. In contrast, in adult mice, the effect of phasic activity diminishes. Furthermore, our results showed that dopaminergic and glutamatergic transmission regulate this axonal plasticity in adolescence and inhibition of dopamine D2-type receptors restores this plasticity in adulthood. Finally, we found that phasic activation of dopamine neurons also induces greater changes in mesofrontal circuit activity and psychomotor response in adolescent mice than in adult mice. Together, our findings demonstrate that the structure and function of the mesofrontal circuit are modifiable by phasic activity in dopaminergic neurons during adolescence and suggest that the greater plasticity in adolescence may facilitate activity-dependent strengthening of dopaminergic input and improvement in behavioral control.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 07/2014; 34(29):9484-96. DOI:10.1523/JNEUROSCI.1114-14.2014 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current antipsychotic drugs primarily target dopamine D2 receptors (D2Rs), in conjunction with other receptors such as those for serotonin. However, these drugs have serious side effects such as extrapyramidal symptoms (EPS) and diabetes. Identifying a specific D2R signaling pathway that could be targeted for antipsychotic effects, without inducing EPS, would be a significant improvement in the treatment of schizophrenia. We report here that the D2R forms a protein complex with Disrupted in Schizophrenia 1 (DISC1) that facilitates D2R-mediated glycogen synthase kinase (GSK)-3 signaling and inhibits agonist-induced D2R internalization. D2R-DISC1 complex levels are increased in conjunction with decreased GSK-3α/β (Ser21/9) phosphorylation in both postmortem brain tissue from schizophrenia patients and in Disc1-L100P mutant mice, an animal model with behavioral abnormalities related to schizophrenia. Administration of an interfering peptide that disrupts the D2R-DISC1 complex successfully reverses behaviors relevant to schizophrenia but does not induce catalepsy, a strong predictor of EPS in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
    Neuron 11/2014; DOI:10.1016/j.neuron.2014.11.007 · 15.77 Impact Factor

Full-text (2 Sources)

Download
24 Downloads
Available from
Jun 4, 2014