Article

Whole genome analysis of p38 SAPK-mediated gene expression upon stress.

Cell Signaling Unit, Universitat Pompeu Fabra (UPF) Dr aiguader 88, Barcelona 08003, Spain.
BMC Genomics (Impact Factor: 4.4). 03/2010; 11:144. DOI: 10.1186/1471-2164-11-144
Source: PubMed

ABSTRACT Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.
Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFalpha and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38alpha SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38alpha the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38alpha deficient (p38alpha-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress.
Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.

2 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The kinase Mnk2 is a substrate of the MAPK pathway and phosphorylates the translation initiation factor eIF4E. In humans, MKNK2, the gene encoding for Mnk2, is alternatively spliced yielding two splicing isoforms with differing last exons: Mnk2a, which contains a MAPK-binding domain, and Mnk2b, which lacks it. We found that the Mnk2a isoform is downregulated in breast, lung, and colon tumors and is tumor suppressive. Mnk2a directly interacts with, phosphorylates, activates, and translocates p38α-MAPK into the nucleus, leading to activation of its target genes, increasing cell death and suppression of Ras-induced transformation. Alternatively, Mnk2b is pro-oncogenic and does not activate p38-MAPK, while still enhancing eIF4E phosphorylation. We further show that Mnk2a colocalization with p38α-MAPK in the nucleus is both required and sufficient for its tumor-suppressive activity. Thus, Mnk2a downregulation by alternative splicing is a tumor suppressor mechanism that is lost in some breast, lung, and colon tumors.
    Cell Reports 04/2014; · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent discoveries have increased our comprehension of the molecular signaling events critical for melanoma development and progression. Many oncogenes driving melanoma have been identified, and most of them exert their oncogenic effects through the activation of the RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway. The c-Jun N-terminal kinase (JNK) and p38 MAPK pathways are also important in melanoma, but their precise role is not clear yet. This review summarizes our current knowledge on the role of the three main MAPK pathways, extracellular regulated kinase (ERK), JNK, and p38, and their impact on melanoma biology. Although the results obtained with BRAF inhibitors in melanoma patients are impressive, several mechanisms of acquired resistance have emerged. To overcome this obstacle constitutes the new challenge in melanoma therapy. Given the major role that MAPKs play in melanoma, understanding their functions and the interconnection among them and with other signaling pathways represents a step forward toward this goal.
    Pigment Cell & Melanoma Research 09/2011; 24(5):902-21. · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the affinity optimization of protein binders is straightforward, engineering epitope specificity is more challenging. Targeting a specific surface patch is important because the biological relevance of protein binders depends on how they interact with the target. They are particularly useful to test hypotheses motivated by biochemical and structural studies. We used yeast display to engineer monobodies that bind a defined surface patch on the mitogen activated protein kinase (MAPK), Erk-2. The targeted area ("CD" domain) is known to control the specificity and catalytic efficiency of phosphorylation by the kinase by binding a linear peptide ("D" peptide) on substrates and regulators. An inhibitor of the interaction should thus be useful for regulating Erk-2 signaling in vivo. Although the CD domain constitutes only a small percentage of the surface area of the enzyme (~ 5%), sorting a yeast displayed monobody library with wild type (wt) Erk-2 and a rationally designed mutant led to isolation of high affinity clones with desired epitope specificity. The engineered binders inhibited the activity of Erk-2 in vitro and in mammalian cells. Furthermore, they specifically inhibited the activity of Erk-2 orthologs in yeast and suppressed a mutant phenotype in round worms caused by overactive MAPK signaling. The study therefore shows that positive and negative screening can be used to bias the evolution of epitope specificity and predictably design inhibitors of biologically relevant protein-protein interaction.
    ACS Chemical Biology 12/2012; · 5.44 Impact Factor

Full-text (2 Sources)

View
40 Downloads
Available from
Jun 2, 2014