Calcium imaging in the ant Camponotus fellah reveals a conserved odour-similarity space in insects and mammals.

Université de Toulouse; UPS; Research Centre for Animal Cognition (UMR 5169), 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
BMC Neuroscience (Impact Factor: 3). 02/2010; 11:28. DOI: 10.1186/1471-2202-11-28
Source: PubMed

ABSTRACT Olfactory systems create representations of the chemical world in the animal brain. Recordings of odour-evoked activity in the primary olfactory centres of vertebrates and insects have suggested similar rules for odour processing, in particular through spatial organization of chemical information in their functional units, the glomeruli. Similarity between odour representations can be extracted from across-glomerulus patterns in a wide range of species, from insects to vertebrates, but comparison of odour similarity in such diverse taxa has not been addressed. In the present study, we asked how 11 aliphatic odorants previously tested in honeybees and rats are represented in the antennal lobe of the ant Camponotus fellah, a social insect that relies on olfaction for food search and social communication.
Using calcium imaging of specifically-stained second-order neurons, we show that these odours induce specific activity patterns in the ant antennal lobe. Using multidimensional analysis, we show that clustering of odours is similar in ants, bees and rats. Moreover, odour similarity is highly correlated in all three species.
This suggests the existence of similar coding rules in the neural olfactory spaces of species among which evolutionary divergence happened hundreds of million years ago.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vertebrates and many invertebrates, olfactory signals detected by peripheral olfactory receptor neurons (ORNs) are conveyed to a primary olfactory center with glomerular organization in which odor-specific activity patterns are generated. In the cockroach, Periplaneta americana, ORNs in antennal olfactory sensilla project to 205 unambiguously identifiable antennal lobe (AL) glomeruli that are classified into 10 glomerular clusters (T1-T10 glomeruli) innervated by distinct sensory tracts. In this study we employed single sensillum staining techniques and investigated the topographic projection patterns of individual ORNs to elucidate the relationship between sensillum types and glomerular organization in the AL. Axons of almost all ORNs projected to individual glomeruli. Axons of ORNs in perforated basiconic sensilla selectively innervated the anterodorsal T1-T4 glomeruli, whereas those in trichoid and grooved basiconic sensilla innervated the posteroventral T5-T9 glomeruli. About 90% of stained ORNs in trichoid sensilla sent axons to the T5 glomeruli and more than 90% of ORNs in grooved basiconic sensilla innervated the T6, T8, and T9 glomeruli. The T5 and T9 glomeruli exclusively receive sensory inputs from the trichoid and grooved basiconic sensilla, respectively. All investigated glomeruli received convergent input from a single type of sensillum except F11 glomerulus in the T6 glomeruli, which was innervated from both trichoid and grooved basiconic sensilla. These results suggest that ORNs in distinct sensillum types project to glomeruli in distinct glomerular clusters. Since ORNs in distinct sensillum types are each tuned to distinct subsets of odorant molecules, the AL is functionally compartmentalized into groups of glomeruli.
    The Journal of Comparative Neurology 11/2011; 520(8):1687-701. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insects possess miniature brains but exhibit a sophisticated behavioral repertoire. Recent studies have reported the existence of unsuspected cognitive capabilities in various insect species that go beyond the traditionally studied framework of simple associative learning. Here, I focus on capabilities such as attentional modulation and concept learning and discuss their mechanistic bases. I analyze whether these behaviors, which appear particularly complex, can be explained on the basis of elemental associative learning and specific neural circuitries or, by contrast, require an explanatory level that goes beyond simple associative links. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering the basic neural architectures underlying cognitive processing.
    Trends in Neurosciences 01/2013; · 13.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception.
    Neuroscience & Biobehavioral Reviews 06/2013; · 10.28 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014