Calcium imaging in the ant Camponotus fellah reveals a conserved odour-similarity space in insects and mammals.

Université de Toulouse; UPS; Research Centre for Animal Cognition (UMR 5169), 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
BMC Neuroscience (Impact Factor: 2.85). 02/2010; 11:28. DOI: 10.1186/1471-2202-11-28
Source: PubMed

ABSTRACT Olfactory systems create representations of the chemical world in the animal brain. Recordings of odour-evoked activity in the primary olfactory centres of vertebrates and insects have suggested similar rules for odour processing, in particular through spatial organization of chemical information in their functional units, the glomeruli. Similarity between odour representations can be extracted from across-glomerulus patterns in a wide range of species, from insects to vertebrates, but comparison of odour similarity in such diverse taxa has not been addressed. In the present study, we asked how 11 aliphatic odorants previously tested in honeybees and rats are represented in the antennal lobe of the ant Camponotus fellah, a social insect that relies on olfaction for food search and social communication.
Using calcium imaging of specifically-stained second-order neurons, we show that these odours induce specific activity patterns in the ant antennal lobe. Using multidimensional analysis, we show that clustering of odours is similar in ants, bees and rats. Moreover, odour similarity is highly correlated in all three species.
This suggests the existence of similar coding rules in the neural olfactory spaces of species among which evolutionary divergence happened hundreds of million years ago.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory systems use parallel processing to extract and process different features of environmental stimuli. Parallel processing has been studied in the auditory, visual, and somatosensory systems, but equivalent research in the olfactory modality is scarce. The honeybee Apis mellifera is an interesting model for such research as its relatively simple brain contains a dual olfactory system, with a clear neural dichotomy from the periphery to higher-order centers, based on two main neuronal tracts [medial (m) and lateral (l) antenno-protocerebral tract (APT)]. The function of this dual system is as yet unknown, and attributes like odor quality and odor quantity might be separately encoded in these subsystems. We have thus studied olfactory coding at the input of both subsystems, using in vivo calcium imaging. As one of the subsystems (m-APT) has never been imaged before, a novel imaging preparation was developed to this end, and responses to a panel of aliphatic odorants at different concentrations were compared in both subsystems. Our data show a global redundancy of olfactory coding at the input of both subsystems but unravel some specificities for encoding chemical group and carbon chain length of odor molecules.
    Journal of Neurophysiology 05/2012; 108(4):1106-21. · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception.
    Neuroscience & Biobehavioral Reviews 06/2013; · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insects possess miniature brains but exhibit a sophisticated behavioral repertoire. Recent studies have reported the existence of unsuspected cognitive capabilities in various insect species that go beyond the traditionally studied framework of simple associative learning. Here, I focus on capabilities such as attentional modulation and concept learning and discuss their mechanistic bases. I analyze whether these behaviors, which appear particularly complex, can be explained on the basis of elemental associative learning and specific neural circuitries or, by contrast, require an explanatory level that goes beyond simple associative links. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering the basic neural architectures underlying cognitive processing.
    Trends in Neurosciences 01/2013; · 12.90 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014