Physics opportunities at $\mu^{+}\mu^{-}$ Higgs factories

Source: OAI

ABSTRACT We update theoretical studies of the physics opportunities presented by mu+mu- Higgs factories. Interesting measurements of the Standard Model Higgs decays into {\bar b}b, tau+tau- and WW* may be possible if the Higgs mass is less than about 160 GeV, as preferred by the precision electroweak data, the mass range being extended by varying appropriately the beam energy resolution. A suitable value of the beam energy resolution would also enable the uncertainty in the b-quark mass to be minimized, facilitating measurements of parameters in the MSSM at such a first mu+mu- Higgs factory. These measurements would be sensitive to radiative corrections to the Higgs-fermion-antifermion decay vertices, which may violate CP. Radiative corrections in the MSSM may also induce CP violation in Higgs-mass mixing, which can be probed via various asymmetries measurable using polarized mu+mu- beams. In addition, Higgs-chargino couplings may be probed at a second mu+mu- Higgs factory.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb(-1) of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb(-1) of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.
    European Physical Journal C 09/2009; · 5.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the pair-production of charginos in the CP-violating Minimal Supersymmetric Standard Model at center-of-mass energies around the heavy neutral Higgs boson resonances. If these resonances are nearly degenerate, as it can happen in the Higgs decoupling limit, radiatively induced scalar-pseudoscalar transitions can be strongly enhanced. The resulting mixing in the Higgs sector leads to large CP-violating effects, and a change of their mass spectrum. For longitudinally polarized muon beams, we analyze CP asymmetries which are sensitive to the interference of the two heavy neutral Higgs bosons. We present a detailed numerical analysis of the cross sections, chargino branching ratios, and the CP observables. We obtain sizable CP-asymmetries, which would be accessible in future measurements at a muon collider. Especially for intermediate values of the parameter \tan\beta, where the largest branching ratios of Higgs bosons into charginos are expected, this process allows to analyze the Higgs sector properties and its interaction to supersymmetric fermions.
    Journal of High Energy Physics 07/2008; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MSSM contains CP-violating phases that may have important observable effects in Higgs physics. We review recent highlights in Higgs phenomenology obtained with the code CPsuperH, a useful tool for studies of the production, mixing and decay of a coupled system of the neutral Higgs bosons at future high energy colliders such as the LHC, ILC (γLC), and a muon collider (MC). CPsuperH implements the constraints from upper limits on electric dipole moments, and may be extended to include other related low-energy observables, such as b→sγ and B→Kl l, and to compute the relic abundance of the lightest neutralino.
    Modern Physics Letters A 11/2011; 21(18). · 1.11 Impact Factor

Full-text (3 Sources)

Available from