Article

3D fast spin echo with out-of-slab cancellation: A technique for high-resolution structural imaging of trabecular bone at 7 tesla

Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
Magnetic Resonance in Medicine (Impact Factor: 3.4). 03/2010; 63(3):719-27. DOI: 10.1002/mrm.22213
Source: PubMed

ABSTRACT Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss.

0 Followers
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective The purpose of this study was to investigate the pathological alterations and the stress responses around deep brain stimulation (DBS) electrodes after magnetic resonance imaging (MRI) scans at 7.0T, 3.0T and 1.5T. Materials and Methods DBS devices were stereotactically implanted into the brains of New Zealand rabbits, targeting the left nucleus ventralis posterior thalami, while on the right side, a puncture passage pointing to the same target was made. MRI scans at 7.0T, 3.0T and 1.5T were performed using transmit/receive head coils. The pathological alterations of the surrounding tissue were evaluated by hematoxylin and eosin staining (H&E staining) and transmission electron microscopy (TEM). The levels of the 70 kDa heat shock protein (HSP-70), Neuronal Nuclei (NeuN) and Caspase-3 were determined by western-blotting and quantitative polymerase chain reaction (QPCR) to assess the stress responses near the DBS electrodes. Results H&E staining and TEM showed that the injury around the DBS electrodes was featured by a central puncture passage with gradually weakened injurious alterations. Comparisons of the injury across the groups manifested similar pathological alterations near the DBS electrodes in each group. Moreover, western-blotting and QPCR assay showed that the level of HSP-70 was not elevated by MRI scans (p>0.05), and the levels of NeuN and Caspase-3 were equal in each group, regardless of the field strengths applied (p>0.05). Conclusions Based on these findings, it is reasonable to conclude that in this study the MRI scans at multiple levels failed to induce additional tissue injury around the DBS electrodes. These preliminary data furthered our understanding of MRI-related DBS heating and encouraged revisions of the current MRI guidelines for patients with DBS devices.
    PLoS ONE 07/2014; 9(7):e101624. DOI:10.1371/journal.pone.0101624 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spin-echo-based acquisitions are the workhorse of clinical MRI because they provide a variety of useful image contrasts and are resistant to image artifacts from radio-frequency or static field inhomogeneity. Three-dimensional (3D) acquisitions provide datasets that can be retrospectively reformatted for viewing in freely selectable orientations, and are thus advantageous for evaluating the complex anatomy associated with many clinical applications of MRI. Historically, however, 3D spin-echo-based acquisitions have not played a significant role in clinical MRI due to unacceptably long acquisition times or image artifacts associated with details of the acquisition method. Recently, optimized forms of 3D fast/turbo spin-echo imaging have become available from several MR-equipment manufacturers (for example, CUBE [GE], SPACE [Siemens], and VISTA [Philips]). Through specific design strategies and optimization, including short non-spatially selective radio-frequency pulses to significantly shorten the echo spacing and variable flip angles for the refocusing radio-frequency pulses to suppress blurring or considerably lengthen the useable duration of the spin-echo train, these techniques permit single-slab 3D imaging of sizeable volumes in clinically acceptable acquisition times. These optimized fast/turbo spin-echo pulse sequences provide a robust and flexible approach for 3D spin-echo-based imaging with a broad range of clinical applications. J. Magn. Reson. Imaging 2014. © 2014 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 04/2014; 39(4). DOI:10.1002/jmri.24542 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. J. Magn. Reson. Imaging 2013;. © 2013 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 06/2014; 39(6). DOI:10.1002/jmri.24305 · 2.79 Impact Factor