Article

Magnetic resonance imaging of a unique mutation in a family with Pelizaeus-Merzbacher disease.

Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Ontario, Canada.
American Journal of Medical Genetics Part A (Impact Factor: 2.3). 02/2010; 152A(3):748-52. DOI: 10.1002/ajmg.a.33305
Source: PubMed

ABSTRACT Pelizaeus-Merzbacher disease (PMD) is a rare dysmyelination disorder, characterized by significant developmental delay, truncal hypotonia, spasticity, dysarthria, and nystagmus. Conventional magnetic resonance (MR) images demonstrate discordance of myelin maturation, while newer MR techniques, such as MR spectroscopy and diffusion tensor imaging, may be helpful in disease assessment. We report on a family of two young boys and their mother who share the same unusual 4-bp deletion of the PLP1 gene: c51_54 del TTCC, causing truncation of the PLP1 in exon 2. The brain MRI appearances in this unique deletion, using newer MR imaging, are described.

0 Bookmarks
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteolipid protein 1 (PLP1) gene-related disorders due to mutations in the PLP1 include a wide spectrum of X-linked disorders ranging from severe connatal Pelizaeus-Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). Duplications, deletions or point mutations in coding and noncoding regions of the PLP1 gene may occur. We report the clinical, neuroradiologic and molecular findings in six patients from two unrelated families. The affected males showed severe mental retardation, spastic tetraparesis, inability of walking and pes cavus at onset in early infancy. Brain magnetic resonance imaging (MRI) showed hypomyelination and brain atrophy. Nystagmus was never observed. The affected females showed adult-onset progressive spastic paraparesis leading to wheel-chair dependency and subtle white matter changes on brain MRI. Molecular studies in the two families identified two different intronic mutations, the novel c.622+2T>C and the known c.622+1G>A, leading to the skipping of PLP1-exon 4. The clinical presentation of the affected males did not consistently fit in any of the PLP1-related disorder subtypes (i.e., connatal or classic PMD, SPG2 and 'PLP1 null syndrome'), and in addition, the carrier females were symptomatic despite the severe clinical picture of their respective probands. This study provides new insight into the genotype-phenotype correlations of patients with PLP1 splice-site mutations.
    Clinical Genetics 05/2013; · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypomyelinating leukodystrophies represent a genetically heterogeneous but clinically overlapping group of heritable disorders. Current management approaches in the care of the patient with a hypomyelinating leukodystrophy include use of serial MR imaging to establish and monitor hypomyelination, molecular diagnostics to determine a specific etiology, and, equally important, careful attention to neurologic complications over time. Emerging research in oligodendrocyte biology and neuroradiology with bedside applications may result in the possibility of clinical trials in the near term, yet there are significant gaps in knowledge in disease classification, characterization and outcome measures in this group of disorders. Here we review the biological background of myelination, the clinical and genetic variability in hypomyelinating leukodystrophies, and the insights that can be obtained from current MRI techniques. In addition, we discuss ongoing research approaches to define potential outcome markers for future clinical trials. ANN NEUROL 2014. © 2014 American Neurological Association.
    Annals of Neurology 06/2014; · 11.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pelizaeus-Merzbacher disease (PMD) is a rare, X-linked recessive disorder characterized by dysmyelination in the central nervous system. PMD results from deletion, mutation, or duplication of the proteolipid protein gene (PLP1) located at Xq22, leading to the failure of axon myelination by oligodendrocytes in the central nervous system. PMD may be suspected when there are clinical manifestations such as nystagmus, developmental delays, and spasticity, and genetic analysis can confirm the diagnosis. Further diagnostic manifestations of the disease include a lack of myelination on brain magnetic resonance (MR) imaging and aberrant N-acetyl aspartate (NAA) and choline concentrations that reflect axonal and myelination abnormalities on phroton MR spectroscopy. We report 5 cases of PMD (in 1 girl and 4 boys). PLP1 duplication was detected in 2 patients. Brain MR analyses and MR spectroscopy were performed for all the patients. The brain MR images showed white matter abnormalities typical of PMD, and the MR spectroscopic images showed diverse patterns of NAA, creatinine, and choline concentrations. We propose that MR spectroscopic analysis of metabolic alterations can aid the PMD diagnosis and can contribute to a better understanding of the pathogenesis of the disease.
    Korean Journal of Pediatrics 10/2012; 55(10):397-402.