Are MD-PhD Programs Meeting Their Goals? An Analysis of Career Choices Made by Graduates of 24 MD-PhD Programs

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA. .
Academic medicine: journal of the Association of American Medical Colleges (Impact Factor: 3.47). 02/2010; 85(4):692-701. DOI: 10.1097/ACM.0b013e3181d3ca17
Source: PubMed

ABSTRACT MD-PhD training programs provide an integrated approach for training physician-scientists. The goal of this study was to characterize the career path taken by MD-PhD program alumni during the past 40 years and identify trends that affect their success.
In 2007-early 2008, 24 programs enrolling 43% of current trainees and representing half of the National Institutes of Health-funded MD-PhD training programs submitted anonymous data on 5,969 current and former trainees.
The average program enrolled 90 trainees, required 8.0 years to complete, and had an attrition rate of 10%. Nearly all (95%) of those who graduated entered residencies. Most (81%) were employed in academia, research institutes, or industry; 16% were in private practice. Of those in academia, 82% were doing research and at least 61% had identifiable research funding. Whereas two-thirds devoted more than 50% effort to research, only 39% devoted more than 75% effort. Many with laboratory-based PhDs reported doing clinical, as well as basic and translational, research. Emerging trends include decreasing numbers of graduates who forego residencies or hold primary appointments in nonclinical departments, increasing time to graduation, and expanding residency choices that include disciplines historically associated with clinical practice rather than research.
Most MD-PhD program graduates follow career paths generally consistent with their training as physician-scientists. However, the range of their professional options is broad. Further thought should be given to designing their training to anticipate their career choices and maximize their likelihood of success as investigators.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physician-scientists, with in-depth training in both medicine and research, are uniquely poised to address pressing challenges at the forefront of biomedicine. In recent years, a number of organizations have outlined obstacles to maintaining the pipeline of physician-scientists, classifying them as an endangered species. As in-training and early-career physician-scientists across the spectrum of the pipeline, we share here our perspective on the current challenges and available opportunities that might aid our generation in becoming independent physician-scientists. These challenges revolve around the difficulties in recruitment and retention of trainees, the length of training and lack of support at key training transition points, and the rapidly and independently changing worlds of medical and scientific training. In an era of health care reform and an environment of increasingly sparse NIH funding, these challenges are likely to become more pronounced and complex. As stakeholders, we need to coalesce behind core strategic points and regularly assess the impact and progress of our efforts with appropriate metrics. Here, we expand on the challenges that we foresee and offer potential opportunities to ensure a more sustainable physician-scientist workforce.
    Journal of Clinical Investigation 02/2015; DOI:10.1172/JCI80933 · 13.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Physician-scientists play a critical role in discovering new biological knowledge and translating findings into medical practices that can improve clinical outcomes. Collectively, the National Institutes of Health (NIH) and its affiliated Medical Scientist Training Programs (MSTPs) invest upwards of $500,000 to fully train each of the 900+ MD/PhD students enrolled in these programs. Nevertheless, graduates face the challenges of navigating fragmented intervals of clinical training and research engagement, reinitiating research upon completing their residencies, managing financial pressures, and competing for funding following what is typically four or more years of research inactivity. Together, these barriers contribute to the high attrition rate of MSTP graduates from research careers. The authors designed and implemented (2009-2014), for a single trainee, an alternative postgraduate training model characterized by early research engagement, strategic mentoring, unyoked clinical and research milestones, and dedicated financial support. The pilot training experiment was so successful that the trainee secured an NIH project grant and completed his transition to research independence 3.5 years after starting the experimental training schedule-nearly 9 years earlier (based on age) than is typical for MD/PhDs transitioning from mentored to independent research. This success has demonstrated that unyoking research engagement from conventional calendar-based clinical training milestones is a feasible, effective means of incubating research independence in MSTP graduates. The authors encourage the design and application of similar unconventional approaches that interweave residency training with ongoing research activity for appropriate candidates, especially in subspecialties with increased MSTP graduate enrollment.
    Academic medicine: journal of the Association of American Medical Colleges 11/2014; DOI:10.1097/ACM.0000000000000568 · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.
    Academic medicine: journal of the Association of American Medical Colleges 10/2014; DOI:10.1097/ACM.0000000000000540 · 3.47 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014