Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

Public Health Services Gelderland Midden, Arnhem, the Netherlands.
Environmental Health Perspectives (Impact Factor: 7.26). 02/2010; 118(6):783-9. DOI: 10.1289/ehp.0901622
Source: PubMed

ABSTRACT Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types.
The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type.
We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter <or= 2.5 microm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location.
We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 microg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 microg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 x 10-5/m), diesel cars (7.9 x 10-5/m), and diesel buses (7.4 x 10-5/m) and lowest along the low-traffic bicycle route (4.9 x 10-5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers.
Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  • Source
    European Heart Journal 12/2014; 36(2). DOI:10.1093/eurheartj/ehu458 · 14.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or risk highlight the primary importance of reducing emissions of air pollutants at their sources.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transport sector is the largest source of NOx and CO emissions, and among the largest sources of PM2.5 and VOCs. As a result of EPA's new near-road monitoring requirements, high-quality measurements of ambient NO2, CO, and PM2.5 concentrations will be available from more than 120 sites adjacent to major roads in over 100 cities nationwide in the next few years. This article discusses how data from the new network will provide opportunities to further develop, calibrate, and verify exposure assessment methods and models.

Full-text (3 Sources)

Available from
Jun 5, 2014