How many people are injured and killed as a result of aging? Frailty, fragility, and the elderly risk-exposure tradeoff assessed via a risk saturation model.

Center for Applied Biomechanics, University of Virginia, U.S.A.
Annals of advances in automotive medicine 01/2009; 53:41-50.
Source: PubMed

ABSTRACT Crash protection for an aging population is one of the primary drivers of contemporary passive safety research, yet estimates of the potential benefit of age-optimized systems have not been reported. This study estimates the number killed and injured in traffic crashes due to the age-related reduction in tolerance to loading. A risk-saturation model is developed and calibrated using 2000-2007 data for the age distribution of crash-involved adult occupants and drivers and the number of those injured and killed in 2006. Nonlinear functions describing the relationships between age and risk, adjusted for several confounders are developed using 10 years of NASS-CDS data and considered along with published risk functions for both mortality and injury. The numbers killed and injured as a result of age-related fragility and frailty are determined by setting the risk at all ages equal to the risk at age 20 (i.e., risk is assumed to "saturate" at age 20). The analysis shows that risk saturation at age 20 corresponds to 7,805-14,939 fewer driver deaths and 10,989-21,132 fewer deaths to all occupants. Furthermore, 1.13-1.32 million fewer occupants would be injured (0.80-0.93 million fewer drivers) per year. In other words, that number of deaths and injuries can be attributed to age-related reductions in loading tolerance. As the age of risk saturation increases, the benefit decreases, but remains substantial even in the age regime typically considered "elderly". For example, risk saturation at age 60 corresponds to 1,011-3,577 fewer deaths and 73,537-179,396 fewer injured occupants per year. The benefit of risk saturation is nearly log-linear up to approximately age 70, but drops off quickly thereafter due to the low exposures in the oldest age range. The key contribution of this study is the quantification of deaths and injuries that can be attributed to aging and the development of functions describing the relationship between age of risk saturation and the number of deaths and injuries averted.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of age, body mass index (BMI) and gender on motor vehicle crash (MVC) injuries are not well understood and current prevention efforts do not effectively address variability in occupant characteristics.
    Accident Analysis & Prevention 07/2014; 72C:146-160. DOI:10.1016/j.aap.2014.05.024 · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the characteristics of fatal vehicle-pedestrian accidents in China,a team was established and passenger car-pedestrian crash cases occurring between 2006 and 2011 in Beijing and Chongqing, China were collected. A total of 121 fatal passenger car-adult pedestrian collisions were sampled and analyzed. The pedestrian injuries were scored according to Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS). The demographical distributions of fatal pedestrian accidents differed from other pedestrian accidents. Among the victims, no significant discrepancy in the distribution of ISS and AIS in head, thorax, abdomen, and extremities by pedestrian age was found, while pedestrian behaviors prior to the crashes may affect the ISS. The distributions of AIS in head, thorax, and abdomen among the fatalities did not show any association with impact speeds or vehicle types, whereas there was a strong relationship between the ISS and impact speeds. Whether pedestrians died in the accident field or not was not associated with the ISS or AIS. The present results may be useful for not only forensic experts but also vehicle safety researchers. More investigations regarding fatal pedestrian accidents need be conducted in great detail.
    Journal of Forensic and Legal Medicine 10/2014; 27. DOI:10.1016/j.jflm.2014.08.003 · 0.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pedestrian disability and fatality as a consequence of car crashes is a large global health problem. To introduce maximally effective car-based countermeasures it is important to understand which injuries are most common and from which car parts they originate. It is also important to focus on the most severe injuries resulting in disability or death. The aim of this thesis was therefore to determine priorities for and evaluate the potential of car-mounted safety systems designed to mitigate severe upper-body injuries (including disability and fatality) of pedestrians in car crashes. Accident data was collected from two areas; severe (AIS3+) accidents in Dresden/Hannover in Germany and fatal accidents in Sweden. For the surviving pedestrians an estimate of long-term injury was performed using accident dataderived risk matrices of permanent injury. Results showed that 31% would sustain a permanent impairment of some kind and 5% would sustain a more severe impairment, where the head was most susceptible to severe impairment. The car front frequently caused leg injuries, which is addressed in current regulations. However, current legal tests do not address the most common upper-body injury source, the windshield, which was found to be the dominating cause of head injuries. Chest injuries, frequently caused by both the hood and windshield areas in the severe and fatal crashes in this thesis, are also unaddressed in legal tests. Children are most commonly head-injured from the hood area, which is addressed in current regulations. Further, regulations do not fully consider brain injury with the current head test methods. Therefore, in this thesis focus was on upper-body injury/source combinations not addressed in the regulations, that is, the head-to-windshield area and chest-to-hood/windshield areas, and the evaluation of brain injury in hood and windshield impacts. Experimental head-to-hood component tests with succeeding brain simulations were performed to evaluate the influence of the under-hood distance and head impact speed. A hood designed to minimize linear head loading to acceptable injury levels was also found effective in reducing combined linear/rotational brain loading. Further, in full-scale car-to-pedestrian finite element simulations both a braking and deployable system alone proved efficient in reducing head and chest loading, and an integrated countermeasure of combining the two systems proved to increase the protection potential. While current pedestrian countermeasures focus on the head-to-hood impact, this thesis recommends extending countermeasures to the lower part of the windshield and the A-pillars, and adding brain and chest injury assessment for both hood and windshield areas to effectively minimize disabling and fatal injuries. Since head impact location and head impact speed is dependent on the car design, the introduction of full-scale simulations in the test methods to determine impact conditions for experimental component tests is recommended. If the deployable countermeasures are combined with autonomous braking in an integrated system the most effective system is achieved. Auto-brake systems should, in high speed impacts, aim to reduce speeds to where the secondary countermeasures can effectively mitigate injury. Future pedestrian test methods should therefore evaluate how primary and secondary countermeasures interact.
    04/2011, Degree: PhD, Supervisor: Anders Kullgren

Full-text (2 Sources)

Available from
May 19, 2014