Article

Does neuroimaging research examining the pathophysiology of posttraumatic stress disorder require medication-free patients?

Department of Psychiatry, University of Western Ontario, London, Ont., Canada.
Journal of psychiatry & neuroscience: JPN (Impact Factor: 7.49). 03/2010; 35(2):80-9. DOI: 10.1503/jpn.090047
Source: PubMed

ABSTRACT In an attempt to avoid unknown influence, most neuroimaging studies examining the pathophysiology of posttraumatic stress disorder (PTSD) exclude patients taking medications. Here we review the empirical evidence for relevant medications having a confounding effect on task performance or cerebral blood flow (CBF) in this population. The evidence for potentially confounding effects of psychotherapy in PTSD are also discussed.
The literature that we reviewed was obtained through a PubMed search from 1980 to 2009 using the search terms posttraumatic stress disorder, PTSD, psychotropic medications, neuroimaging, functional magnetic resonance imaging, positron emission tomography, cerebral blood flow, CBF, serotonin-specific reuptake blocker, benzodiazepine, ketamine, methamphetamine, lamotrigine and atypical antipsychotic agents.
The empirical evidence for relevant medications having a confounding effect on task performance or CBF in relevant areas remains sparse for most psychotropic medications among patients with PTSD. However, considerable evidence is accumulating for 2 of the most commonly prescribed medication classes (serotonin-specific reuptake inhibitors and benzodiazepines) in healthy controls. Compelling data for the potentially confounding effects on brain areas relevant to PTSD for psychotherapeutic interventions are also accumulating.
Neuroimaging studies examining the pathophysiology of PTSD should ideally recruit both medicated (assuming that the medication treatment has not resulted in the remission of symptoms) and unmedicated participants, to allow the findings to be generalized with greater confidence to the entire population of patients with PTSD. More research is needed into the independent effects of medications on task performance and CBF in regions of interest in PTSD. Neuroimaging studies should also take into account whether patients are currently engaged in psychotherapeutic treatment.

Download full-text

Full-text

Available from: Israel Liberzon, Jun 23, 2015
0 Followers
 · 
87 Views
  • European Neuropsychopharmacology 10/2012; 22:S131–S132. DOI:10.1016/S0924-977X(12)70163-3 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anxiety and stress disorders are among the most prevalent neuropsychiatric disorders. In recent years, multiple studies have examined brain regions and networks involved in anxiety symptomatology in an effort to better understand the mechanisms involved and to develop more effective treatments. However, much remains unknown regarding the specific abnormalities and interactions between networks of regions underlying anxiety disorder presentations. We examined recent neuroimaging literature that aims to identify neural mechanisms underlying anxiety, searching for patterns of neural dysfunction that might be specific to different anxiety disorder categories. Across different anxiety and stress disorders, patterns of hyperactivation in emotion-generating regions and hypoactivation in prefrontal/regulatory regions are common in the literature. Interestingly, evidence of differential patterns is also emerging, such that within a spectrum of disorders ranging from more fear-based to more anxiety-based, greater involvement of emotion-generating regions is reported in panic disorder and specific phobia, and greater involvement of prefrontal regions is reported in generalized anxiety disorder and posttraumatic stress disorder. We summarize the pertinent literature and suggest areas for continued investigation.
    Therapeutics and Clinical Risk Management 01/2015; 11:115-26. DOI:10.2147/TCRM.S48528 · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttraumatic stress disorder (PTSD) is a mental disorder that stems from exposure to one or more traumatic events. While PTSD is thought to result from a dysregulation of emotional neurocircuitry, neurocognitive difficulties are frequently reported. Mental flexibility is a core executive function that involves the ability to shift and adapt to new information. It is essential for appropriate social-cognitive behaviours. Magnetoencephalography (MEG), a neuroimaging modality with high spatial and temporal resolution, has been used to track the progression of brain activation during tasks of mental flexibility called set-shifting. We hypothesized that the sensitivity of MEG would be able to capture the abnormal neurocircuitry implicated in PTSD and this would negatively impact brain regions involved in set-shifting. Twenty-two soldiers with PTSD and 24 matched control soldiers completed a colour-shape set-shifting task. MEG data were recorded and source localized to identify significant brain regions involved in the task. Activation latencies were obtained by analysing the time course of activation in each region. The control group showed a sequence of activity that involved dorsolateral frontal cortex, insula and posterior parietal cortices. The soldiers with PTSD showed these activations but they were interrupted by activations in paralimbic regions. This is consistent with models of PTSD that suggest dysfunctional neurocircuitry is driven by hyper-reactive limbic areas that are not appropriately modulated by prefrontal cortical control regions. This is the first study identifying the timing and location of atypical neural responses in PTSD with set-shifting and supports the model that hyperactive limbic structures negatively impact cognitive function.
    Translational Psychiatry 08/2014; 4(8):e421. DOI:10.1038/tp.2014.63 · 4.36 Impact Factor