Conference Paper

Moving cast shadow detection from a Gaussian mixture shadow model

Dept. of Electr. & Comput. Eng., Laval Univ., Que., Canada
DOI: 10.1109/CVPR.2005.233 In proceeding of: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, Volume: 2
Source: DBLP

ABSTRACT Moving cast shadows are a major concern for foreground detection algorithms. Processing of foreground images in surveillance applications typically requires that such shadows have been identified and removed from the detected foreground. This paper presents a novel pixel-based statistical approach to model moving cast shadows of non-uniform and varying intensity. This approach uses the Gaussian mixture model (GMM) learning ability to build statistical models describing moving cast shadows on surfaces. This statistical modeling can deal with scenes with complex and time-varying illumination, and prevent false detection in regions where shadows cannot be detected. Gaussian mixture shadow models (GMSM) are automatically constructed and updated over time, are easily added to GMM architecture for foreground detection, and require only a small number of parameters. Results obtained with different scene types show the robustness of the approach.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.
    Sensors 01/2013; 13(8):9966-98. · 1.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present a method to model shadows in outdoor scenes. Here, we note that the shadow areas correspond to the diffuse skylight which arises from the scattering of the sunlight by particles in the atmosphere. This yields a treatment in which shadows in the image can be viewed as a linear combination of scattered light obeying Rayleigh scattering and Mie theory. This allows for the computation of a ratio which permits casting the problem of recovering the shadowed areas in the image into a clustering setting making use of active contours. This also opens-up the formulation of a metric that can be used to assess the degree upon which the scene is overcast. We illustrate the utility of the method for purposes of detecting shadows in real-world imagery, provide time complexity results and compare against a number of alternatives elsewhere in the literature.
    Pattern Recognition Letters 11/2013; · 1.27 Impact Factor
  • Source


Available from