Engineering of aligned skeletal muscle by micropatterning

American Journal of Translational Research (Impact Factor: 3.4). 01/2010; 2(1):43-55.
Source: PubMed


Tissue engineered skeletal muscle has tremendous potential for the treatment of muscular injury or muscular dysfunction. However, in vitro methods to generate skeletal muscle with physiologically aligned myofiber structure remains limited. To develop a robust in vitro model that resembles the physiologically aligned structure of muscle fibers, we fabricated micropatterned polymer membranes of poly(dimethylsiloxane) (PDMS) with parallel microgrooves, and then examined the effect of micropatterning on myoblast cellular organization and the cell fusion process. In comparison to the myoblasts on non-patterned PDMS films, myoblasts on micropatterned PDMS films had well-organized F-actin assembly in close proximity to the direction of microgrooves, along with enhanced levels of myotube formation at early time points. The increase of cell cycle regulator p21(WAF/Cip1) and the organized interactions of N-cadherin in myoblasts on micropatterned surfaces may contribute to the enhanced formation of myotubes. Similar results of cellular alignment was observed when myoblasts were cultured on microfluidically patterned poly(2-hydroxyethyl methacrylate) (pHEMA) microgrooves, and the micropatterns were found to detach from the Petri dish over time. To apply this technology for generating aligned tissue-like muscle constructs, we developed a methodology to transfer the aligned myotubes to biodegradable collagen gels. Histological analysis revealed the persistence of aligned cellular organization in the collagen gels. Together, these results demonstrate that micropatterned PDMS or pHEMA can promote cell alignment and fusion along the direction of the microgrooves, and this platform can be utilized to transfer aligned myotubes on biodegradable hydrogels. This study highlights the importance of spatial cues in creating aligned skeletal muscle for tissue engineering and muscular regeneration applications.

5 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle has a robust capacity for regeneration following injury. However, few if any effective therapeutic options for volumetric muscle loss are available. Autologous muscle grafts or muscle transposition represent possible salvage procedures for the restoration of mass and function but these approaches have limited success and are plagued by associated donor site morbidity. Cell-based therapies are in their infancy and, to date, have largely focused on hereditary disorders such as Duchenne muscular dystrophy. An unequivocal need exists for regenerative medicine strategies that can enhance or induce de novo formation of functional skeletal muscle as a treatment for congenital absence or traumatic loss of tissue. In this review, the three stages of skeletal muscle regeneration and the potential pitfalls in the development of regenerative medicine strategies for the restoration of functional skeletal muscle in situ are discussed.
    Cell and Tissue Research 06/2011; 347(3):759-74. DOI:10.1007/s00441-011-1185-7 · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal human dermal fibroblasts were aligned on micropatterned thermoresponsive surfaces simply by one-pot cell seeding. After they proliferated with maintaining their orientation, anisotropic cell sheets were harvested by reducing temperature to 20 °C. Surprisingly, the cell sheets showed different shrinking rates between vertical and parallel sides of the cell alignment (aspect ratio: approx. 3: 1), because actin fibers in the cell sheets were oriented with the same direction. The control of cell alignment provided not only a physical anisotropy but also biological impacts to the cell sheet. Vascular endothelial growth factor (VEGF) secreted by aligned fibroblasts was increased significantly, whereas transforming growth factor-β1 (TGF-β1) expression was the same level in anisotropic cell sheets as cell sheets having random cell orientations. Furthermore, although the amount of deposited type Ⅰ collagen was different non-significantly onto between cell sheets with and without controlled cell alignment, collagen deposited onto fibroblasts sheets with cell alignment also showed anisotropy, verified by a fluorescence imaging analysis. The physical and biological anisotropies of cell sheets were potentially useful to construct biomimetic tissues that were organized by aligned cells and/or extracellular matrix (ECM) including collagen in cell sheet-based regenerative medicine. Furthermore, due to the unique thermoresponsive property, the anisotropic cell sheets were successfully manipulated using a gelatin-coated plunger and were layered with maintaining their cell alignment. The combined use of the anisotropic cell sheet and cell sheet manipulation technique promises to create complex tissue that requires the three-dimensional control of their anisotropies, as one of the next-generation cell sheet technologies.
    Biomaterials 08/2011; 32(34):8830-8. DOI:10.1016/j.biomaterials.2011.08.006 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation.
    International Journal of Nanomedicine 10/2011; 6:2483-97. DOI:10.2147/IJN.S24073 · 4.38 Impact Factor
Show more


5 Reads
Available from