Regulation of phosphate starvation responses in higher plants.

School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia.
Annals of Botany (Impact Factor: 3.3). 02/2010; 105(4):513-26. DOI: 10.1093/aob/mcq015
Source: PubMed

ABSTRACT Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation.
Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed.
An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.

Download full-text


Available from: Patrick M. Finnegan, May 11, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pearl millet [Pennisetum glaucum (L.) R. Br] production on the acid sandy Sahelian soils in West Africa (WA) is severely limited bylaw plant-available phosphorus (P) in addition to erratic rainfall. We sought to examine the genetic variability for P uptake and P utilization efficiency in 180 WA pearl millet inbred lines or subsets thereof under low (LP) and high P (HP) conditions in one field and two pot experiments, determine the relationships among the measured traits and grain yield under field conditions at three other independent WA sites, and identify potential secondary selection traits for improving grain yield under LP. We observed genetic variation for P uptake and utilization in both seedling and mature plants. P utilization efficiency increased under LP conditions. Total P uptake was more important for grain production than P utilization under LP field conditions (r = 0.57*** vs r = 0.30***). The estimated response to indirect selection was positive for most of the measured morphological and P-efficiency parameters. We conclude that both seedling and mature plant traits are potentially useful as secondary traits in selection of pearl millet for low-P adaptation. These results should be validated using heterozygous pearl millet genetic materials. Ultimately, pearl millet breeding activities for low P tolerance in WA should be integrated with other system-oriented research such as nutrient cycling, intercropping or rotations with legumes, better crop-tree-livestock integration, and modest applications of locally available rock phosphate.
    02/2015; 171:54-66. DOI:10.1016/j.fcr.2014.11.001
  • Source
    Phosphorus Metabolism in Plants, Edited by William C. Plaxton, Hans Lambers, 01/2015: chapter Annual Plant Reviews Volume 48: Phosphorus: back to the roots: pages 3-22; Wiley-Blackwell Publishing, Chicester.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have identified genotypic variation in phosphorus (P) efficiency, but rarely have the underlying mechanisms been described at the molecular level. We demonstrate that the highly P-efficient wheat (Triticum aestivum L.) cultivar Chinese 80-55 maintains higher inorganic phosphate (Pi ) concentrations in all organs upon Pi withdrawal in combination with higher Pi acquisition in the presence of Pi when compared with the less-efficient cultivar Machete. These findings correlated with differential organ-specific expression of Pi transporters TaPHT1;2, TaPHT1;5, TaPHT1;8, TaPHT2;1 and H(+) -ATPase TaHa1. Observed transcript level differences between the cultivars suggest that higher de novo phospholipid biosynthetic activities in Pi -limited elongating basal leaf sections are another crucial adaptation in Chinese 80-55 for sustaining growth upon Pi withdrawal. These activities may be supported through enhanced breakdown of starch in Chinese 80-55 stems as suggested by higher TaGPho1 transcript levels. Chinese 80-55 fine roots on the other hand show strong suppression of transcripts involved in glycolysis, transcriptional regulation and ribosomal activities. Our work reveals major differences in the way the two contrasting cultivars allocate Pi and organic P compounds between source and sink tissues and in the acclimation of their metabolism to changes in Pi availability.
    Plant Cell and Environment 10/2013; DOI:10.1111/pce.12210 · 5.91 Impact Factor