Article

Evidence for two conductive pathways in P2X receptor: differences in modulation and selectivity.

Institute of Biophysics, National Research Council, Genoa, Italy.
Journal of Neurochemistry (Impact Factor: 3.97). 02/2010; 113(3):796-806. DOI: 10.1111/j.1471-4159.2010.06649.x
Source: PubMed

ABSTRACT The P2X(7) receptor (P2X(7)R) is an ATP-gated cation channel whose biophysical properties remain to be unravelled unequivocally. Its activity is modulated by divalent cations and organic messengers such as arachidonic acid (AA). In this study, we analysed the differential modulation of magnesium (Mg(2+)) and AA on P2X(7)R by measuring whole-cell currents and intracellular Ca(2+) ([Ca(2+)](i)) and Na(+) ([Na(+)](i)) dynamics in HEK293 cells stably expressing full-length P2X(7)R and in cells endowed with the P2X(7)R variant lacking the entire C-terminus tail (trP2X(7)R), which is thought to control the pore activation. AA induced a robust potentiation of the P2X(7)R- and trP2X(7)R-mediated [Ca(2+)](i) rise but did not affect the ionic currents in both conditions. Extracellular Mg(2+) reduced the P2X7R- and trP2X(7)R-mediated [Ca(2+)](i) rise in a dose-dependent manner through a competitive mechanism. The modulation of the magnitude of the P2X(7)R-mediated ionic current and [Na(+)](i) rise were strongly dependent on Mg(2+) concentration but occurred in a non-competitive manner. In contrast, in cells expressing the trP2X(7)R, the small ionic currents and [Na(+)](i) signals were totally insensitive to Mg(2+). Collectively, these results support the tenet of a functional structure of P2X(7)R possessing at least two distinct conductive pathways one for Ca(2+) and another for monovalent ions, with the latter which depends on the presence of the receptor C-terminus.

0 Bookmarks
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the biological evaluation of a class of adamantane derivatives, which were achieved via modified telescoped machine-assisted flow procedure. Among the series of compounds tested in this work, 5 demonstrated outstanding analgesic properties. This compound showed that its action was not mediated through direct interaction with opioid and/or cannabinoid receptors. Moreover, it did not display any significant anti-inflammatory properties. Experiments carried out on rat cerebrocortical purified synaptosomes indicated that 5 inhibits the P2X7-evoked glutamate release, which may contribute to its antinociceptive properties. Nevertheless, further experiments are ongoing to characterize the pharmacological properties and mechanism of action of this molecule.
    ACS Medicinal Chemistry Letters 08/2013; 4(8):704-9. · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The glutamatergic mechanism of antidepressant treatments is now in the center of research to overcome the limitations of monoamine-based approaches. There are several unresolved issues. For the action of the model compound, ketamine, NMDA-receptor block, AMPA-receptor activation and BDNF release appear to be involved in a mechanism, which leads to synaptic sprouting and strengthened synaptic connections. The link to the pathophysiology of depression is not clear. An overlooked connection is the role of magnesium, which acts as physiological NMDA-receptor antagonist: 1. There is overlap between the actions of ketamine with that of high doses of magnesium in animal models, finally leading to synaptic sprouting. 2. Magnesium and ketamine lead to synaptic strengthening, as measured by an increase in slow wave sleep in humans. 3. Pathophysiological mechanisms, which have been identified as risk factors for depression, lead to a reduction of (intracellular) magnesium. These are neuroendocrine changes (increased cortisol and aldosterone) and diabetes mellitus as well as Mg(2+) deficiency. 4. Patients with therapy refractory depression appear to have lower CNS Mg(2+) levels in comparison to health controls. 5. Experimental Mg(2+) depletion leads to depression- and anxiety like behavior in animal models. 6. Ketamine, directly or indirectly via non-NMDA glutamate receptor activation, acts to increase brain Mg(2+) levels. Similar effects have been observed with other classes of antidepressants. 7. Depressed patients with low Mg(2+) levels tend to be therapy refractory. Accordingly, administration of Mg(2+) either alone or in combination with standard antidepressants acts synergistically on depression like behavior in animal models. CONCLUSION: On the basis of the potential pathophysiological role of Mg(2+)-regulation, it may be possible to predict the action of ketamine and of related compounds based on Mg(2+) levels. Furthermore, screening for compounds to increase neuronal Mg(2+) concentration could be a promising instrument to identify new classes of antidepressants. Overall, any discussion of the glutamatergic system in affective disorders should consider the role of Mg(2+).
    Journal of Psychiatric Research 03/2013; · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The general structure of the P2X7 receptor (P2X7R) is similar to the structure of other P2X receptor family members, with the exception of its C terminus, which is the longest of this family. The P2X7R activates several intracellular signaling cascades, such as the calmodulin, mitogen-activated protein kinase and phospholipase D pathways. At low concentrations of ATP (micromolar range), P2X7R activation opens a cationic channel, similarly to other P2X receptors. However, in the presence of high concentrations of ATP (millimolar range), it opens a pathway allowing that allows the passage of larger organic cations and anions. Here, we discuss both the structural characteristics of P2X7R related to its remarkable functions and the proposed mechanisms, including the dilation of the endogenous pore and the integration of another channel. In addition, we highlight the importance of P2X7R as a therapeutic target.
    Biochimica et biophysica acta. 05/2014;

Full-text

Download
36 Downloads
Available from
May 21, 2014