Article

RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF

Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
Nature (Impact Factor: 42.35). 02/2010; 464(7287):427-30. DOI: 10.1038/nature08902
Source: PubMed

ABSTRACT Tumours with mutant BRAF are dependent on the RAF-MEK-ERK signalling pathway for their growth. We found that ATP-competitive RAF inhibitors inhibit ERK signalling in cells with mutant BRAF, but unexpectedly enhance signalling in cells with wild-type BRAF. Here we demonstrate the mechanistic basis for these findings. We used chemical genetic methods to show that drug-mediated transactivation of RAF dimers is responsible for paradoxical activation of the enzyme by inhibitors. Induction of ERK signalling requires direct binding of the drug to the ATP-binding site of one kinase of the dimer and is dependent on RAS activity. Drug binding to one member of RAF homodimers (CRAF-CRAF) or heterodimers (CRAF-BRAF) inhibits one protomer, but results in transactivation of the drug-free protomer. In BRAF(V600E) tumours, RAS is not activated, thus transactivation is minimal and ERK signalling is inhibited in cells exposed to RAF inhibitors. These results indicate that RAF inhibitors will be effective in tumours in which BRAF is mutated. Furthermore, because RAF inhibitors do not inhibit ERK signalling in other cells, the model predicts that they would have a higher therapeutic index and greater antitumour activity than mitogen-activated protein kinase (MEK) inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have been borne out in a recent clinical trial of the RAF inhibitor PLX4032 (refs 4, 5). The model indicates that promotion of RAF dimerization by elevation of wild-type RAF expression or RAS activity could lead to drug resistance in mutant BRAF tumours. In agreement with this prediction, RAF inhibitors do not inhibit ERK signalling in cells that coexpress BRAF(V600E) and mutant RAS.

Download full-text

Full-text

Available from: Poulikos I. Poulikakos, Jul 04, 2015
1 Follower
 · 
249 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway-the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib-have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Cancer Letters 01/2015; 359(1). DOI:10.1016/j.canlet.2015.01.016 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with melanoma positive for the BRAF V600 mutation, clinical response to specific BRAF inhibitors is usually rapid and striking, with significant benefits in terms of progression-free survival and overall survival. However, resistance to treatment almost invariably arises, typically within a median timeframe of 6 months. Indeed, very few patients exhibit long-lasting response to these targeted therapies. It is essential to better understand the mechanisms of resistance to targeted anti-BRAF therapies in order to increase both response rates and the duration of clinical response to treatment. This literature review describes the signaling pathways involving BRAF and presents recent data from clinical trials with these molecules. Furthermore, we aim to describe the main resistance mechanisms linked with targeted anti-BRAF therapies. The keywords (resistance, BRAF, melanoma, targeted therapy, vemurafenib, and dabrafenib) were used to extract relevant articles in the Medline/Pubmed database published before 31 January 2014. Improved knowledge and understanding of the mechanisms of resistance to targeted anti-BRAF therapies should enable the development of new therapeutic strategies in order to overcome such resistance and allow more significant and sustained response rates to be achieved among melanoma patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
    Annales de Dermatologie et de Vénéréologie 11/2014; 141(11):671-81. DOI:10.1016/j.annder.2014.06.021 · 0.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Determining the developmental consequences of activated RAS and its downstream effectors is critical to understanding several congenital conditions caused by either germline or somatic mutations of the RAS pathway. Here we demonstrate that embryonic activation of BRAF in mouse ectoderm triggers both craniofacial and skin defects, including hyperproliferation, loss of spinous and granular keratinocyte differentiation, and cleft palate. RNA-sequencing reveals that despite an apparent block in spinous and granular differentiation, the epidermis continues to mature, expressing >80% of EDC genes and forming a hydrophobic barrier, both characteristic of later stages in epidermal development. Spinous and granular differentiation can be restored by pharmacologic inhibition of MEK or BRAF; however, in tissue recombination studies, phenotypic reversion was found to be non-cell autonomous and required dermal tissue to be present. These studies indicate that early activation of the RAF signaling pathway in the ectoderm has specific effects on progressive differentiation of the epidermis, which may be amendable to treatment using existing pharmacologic inhibitors.Journal of Investigative Dermatology accepted article preview online, 09 September 2014. doi:10.1038/jid.2014.388.
    Journal of Investigative Dermatology 09/2014; 135(2). DOI:10.1038/jid.2014.388 · 6.37 Impact Factor