Neurohumoral and Metabolic Response to Exercise in Water

Franz-Volhard Clinical Research Center, Medical Faculty of the Charité and HELIOS Klinikum, Berlin, Germany.
Hormone and Metabolic Research (Impact Factor: 2.15). 02/2010; 42(5):334-9. DOI: 10.1055/s-0030-1248250
Source: PubMed

ABSTRACT Atrial natriuretic peptide (ANP) stimulates lipid mobilization and lipid oxidation in humans. The mechanism appears to promote lipid mobilization during exercise. We tested the hypothesis that water immersion augments exercise-induced ANP release and that the change in ANP availability is associated with increased lipid mobilization and lipid oxidation. In an open randomized and cross-over fashion we studied 17 men (age 31+/-3.6 years; body mass index 24+/-1.7 kg/m(2); body fat 17+/-6.7%) on no medication. Subjects underwent two incremental exercise tests on a bicycle ergometer. One test was conducted on land and the other test during immersion in water up to the xiphoid process. In a subset (n=7), we obtained electromyography recordings in the left leg. We monitored gas exchange, blood pressure, and heart rate. In addition, we obtained blood samples towards the end of each exercise step to determine ANP, norepinephrine, epinephrine, lactate, free fatty acids, insulin, and glucose concentrations. Heart rate, systolic blood pressure, and oxygen consumption at the anaerobic threshold and during peak exercise were similar on land and with exercise in water. The respiratory quotient was mildly reduced when subjects exercised in water. Glucose and lactate measurements were decreased whereas free fatty acid concentrations were increased with exercise in water. Water immersion attenuated epinephrine and norepinephrine and augmented ANP release during exercise. Even though water immersion blunts exercise-induced sympathoadrenal activation, lipid mobilization and lipid oxidation rate are maintained or even improved. The response may be explained by augmented ANP release.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various nutritional supplements (herbs, vitamins, and micronutrients) improve responses and adaptations to resistance exercise. ANP is a heart hormone that contributes to fluid, electrolyte and blood pressure homeostasis through its natriuretic and vasodilative actions. In the present study, the adaptation of ANP in response to resistance exercise was investigated in rats supplemented with glutamine for five weeks. The results showed that supplementation with glutamine did not influence the number of ANP granules per atrial cardiocyte in sedentary animals. In exercised-trained rats, the number and diameter of the granules was significantly higher in comparison with the control group and in exercised animals supplemented with glutamine there was significant increase in the number and diameter of ANP granules compared with controls. Altogether, these data indicated that in resistance exercise rats, glutamine significantly enhances cardiac ANP thus implicating the beneficial effects of glutamine supplementation to the ANP system.
    03/2015; 5(1). DOI:10.1016/j.rbce.2013.03.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atrial natriuretic peptides (ANP) and Brain natriuretic peptides (BNP) stimulate fat cell plasma membrane receptors. They are potent lipolytic agents on isolated fat cells from subcutaneous adipose tissue. The physiological effects of continuous endurance exercise on ANP release and plasma free fatty acids (FFA) concentrations have been well described. The enhancement of fat metabolism using high intensity intermittent exercise protocols has been assessed in more recent investigations. The combined effects of endurance exercise and water immersion on ANP and FFA plasma concentration and the magnitude of excess post-exercise oxygen consumption (EPOC) might be further enhanced by choosing the most effective exercise protocol. Exercise modalities may play a significant role in the future prevention and treatment of obesity.Methods/designThe two testing trials will be performed according to a randomized and cross-over design. Twenty healthy sedentary pre-obese and obese class-1 men will be scrutinized with regard to their metabolic responses to continuous exercise in water and to high intensity endurance exercise in water. Both trials will be matched for energy expenditure. After preliminary testing, the tests will be conducted as repeated measurements. The two different exercise protocols will be compared. The aims of the study are to investigate (1) whether continuous endurance exercise or high intensity intermittent endurance exercise in water elicits both a higher release of ANP and BNP and a higher plasma concentration of glycerol and (2) to determine whether continuous endurance exercise in water or a high intensity intermittent endurance exercise in water would lead to a more pronounced short term (two hours) EPOC effect. If our hypothesis would be confirmed, the most effective exercise protocol based on the combined effects of high intensity endurance exercise and water immersion on ANP and BNP release and glycerol plasma concentrations can be identified. Moreover, the magnitude of the EPOC effect can be augmented. Our study would provide a major contribution for creating optimized exercise modalities in the prevention and treatment of obesity.Trial registrationCurrent controlled trials: ISRCTN95488515.
    Trials 10/2013; 14(1):328. DOI:10.1186/1745-6215-14-328 · 2.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ambient temperature during exercise may affect energy intake regulation. Compared with a temperate (20 °C) environment, 1 h of running followed by 6 h of rest tended to decrease energy intake from 2 ad libitum meals in a hot (30 °C) environment but increase energy intake in a cool (10 °C) environment (p = 0.08). Core temperature changes did not appear to mediate this trend; whether acylated ghrelin is involved is unclear. Further research is warranted to clarify these findings.
    Applied Physiology Nutrition and Metabolism 08/2013; 38(8):905-9. DOI:10.1139/apnm-2013-0008 · 2.01 Impact Factor