Article

Genomic instability--an evolving hallmark of cancer.

Department of Molecular Biology, CH-1205 Geneva, Switzerland.
Nature Reviews Molecular Cell Biology (Impact Factor: 36.46). 03/2010; 11(3):220-8. DOI: 10.1038/nrm2858
Source: PubMed

ABSTRACT Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.

0 Followers
 · 
251 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancers of unknown primary (CUPs) constitute ~5% of all cancers. The tumors have an aggressive biological and clinical behavior. The aim of the present study has been to uncover whether CUPs exhibit distinct molecular features compared to metastases of known origin. Employing genome wide transcriptome analysis, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA), we defined the putative origins of a large series of CUP and how closely related a particular CUP was to corresponding metastases of known origin. LDA predictions were subsequently used to define a universal CUP core set of differentially expressed genes, that by means of gene set enrichment analysis was exploited to depict molecular pathways characterizing CUP. The analyses show that CUPs are distinct from metastases of known origin. CUPs exhibit inconsistent expression of conventional cancer biomarkers and QDA derived outlier scores show that CUPs are more distantly related to their primary tumor class than corresponding metastases of known origin. Gene set enrichment analysis showed that CUPs display increased expression of genes involved in DNA damage repair and mRNA signatures of chromosome instability (CIN), indicating that CUPs are chromosome unstable compared to metastases of known origin. CIN may account for the uncommon clinical presentation, chemoresistance and poor outcome in patients with CUP and warrant selective diagnostic strategies and treatment.
    BMC Cancer 03/2015; 15(1):151. DOI:10.1186/s12885-015-1128-x · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The DNA damage response (DDR) induces the expression of type I interferons (IFNs), but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; DOI:10.1016/j.celrep.2015.03.041 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deficiencies in DNA double-strand break (DSB) repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1) is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ). Support of cNHEJ involves a mechanism independent of RB1's cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; DOI:10.1016/j.celrep.2015.02.059 · 7.21 Impact Factor

Preview

Download
0 Downloads
Available from