Article

The role of mathematical modelling in understanding the epidemiology and control of sheep transmissible spongiform encephalopathies: a review

Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.
Veterinary Research (Impact Factor: 3.38). 02/2010; 41(4):42. DOI: 10.1051/vetres/2010014
Source: PubMed

ABSTRACT To deal with the incompleteness of observations and disentangle the complexities of transmission much use has been made of mathematical modelling when investigating the epidemiology of sheep transmissible spongiform encephalopathies (TSE) and, in particular, scrapie. Importantly, these modelling approaches allow the incidence of clinical disease to be related to the underlying prevalence of infection, thereby overcoming one of the major difficulties when studying these diseases. Models have been used to investigate the epidemiology of scrapie within individual flocks and at a regional level; to assess the efficacy of different control strategies, especially selective breeding programmes based on prion protein (PrP) genotype; to interpret the results of scrapie surveillance; and to inform the design of surveillance programmes. Furthermore, mathematical modelling has played an important role when assessing the risk to human health posed by the possible presence of bovine spongiform encephalopathy in sheep. Here, we review the various approaches that have been taken when developing and analysing mathematical models for the epidemiology and control of sheep TSE and assess their impact on our understanding of these diseases. We also identify areas that require further work, discuss future challenges and identify data gaps.

0 Bookmarks
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although prion diseases, such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie in sheep, have long been recognized, our understanding of their epidemiology and pathogenesis is still in its early stages. Progress is hampered by the lengthy incubation periods and the lack of effective ways of monitoring and characterizing these agents. Protease-resistant conformers of the prion protein (PrP), known as the "scrapie form" (PrP(Sc)), are used as disease markers, and for taxonomic purposes, in correlation with clinical, pathological, and genetic data. In humans, prion diseases can arise sporadically (sCJD) or genetically (gCJD and others), caused by mutations in the PrP-gene (PRNP), or as a foodborne infection, with the agent of bovine spongiform encephalopathy (BSE) causing variant CJD (vCJD). Person-to-person spread of human prion disease has only been known to occur following cannibalism (kuru disease in Papua New Guinea) or through medical or surgical treatment (iatrogenic CJD, iCJD). In contrast, scrapie in small ruminants and chronic wasting disease (CWD) in cervids behave as infectious diseases within these species. Recently, however, so-called atypical forms of prion diseases have been discovered in sheep (atypical/Nor98 scrapie) and in cattle, BSE-H and BSE-L. These maladies resemble sporadic or genetic human prion diseases and might be their animal equivalents. This hypothesis also raises the significant public health question of possible epidemiological links between these diseases and their counterparts in humans.
    Topics in current chemistry 05/2011; 305:23-50. DOI:10.1007/128_2011_161 · 4.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: Total number and genotypes of animals in holdings selected for the genotype & cull option in the Compulsory Scrapie Flock Scheme (CSFS) in Great Britain were extracted from the National Scrapie Plan data warehouse. The association between various genotype-related measures and scrapie prevalence infection was tested using zero-inflated negative binomial models with the counts of positive cases as dependent variable, and country, number of flocks in the scheme, flock size, surveillance source and the following genotype-related measurements: the centered-log ratios (clr) oof the 15 genotypes, of the proportions of the 5 alleles at codons 136, 154 and 171, of the proportions of the 5 NSP types, and two flock-susceptibility risk indicators, as explanatory variables. A total of 319341 genotyped animals from 168 holdings were included in the analysis. An increased proportion of the ARR/ARR genotype corresponded to a decrease in the number of scrapie cases. ARR/AHQ, AHQ/VRQ, ARH/VRQ and ARQ/VRQ genotypes, NSP type V, ARH, ARQ, AHQ and VRQ alleles and the low and high-susceptibility risk indicators are all associated with an increase risk in the number of scrapie cases.Regardless the management practices; the increased susceptibility that the non-ARR alleles confer on an individual could be extrapolated at the population level. Increasing prevalence of ARR allele reduces the overall risk of scrapie at population level. At genotype level, the VRQ/VRQ genotype, present a very low frequency in the study population, seems to play a residual effect in the overall risk of scrapie in a flock.
    Veterinary Research 02/2011; 42(1):31. DOI:10.1186/1297-9716-42-31 · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current strategies to control classical scrapie remove animals at risk of scrapie rather than those known to be infected with the scrapie agent. Advances in diagnostic tests, however, suggest that a more targeted approach involving the application of a rapid live test may be feasible in future. Here we consider the use of two diagnostic tests: recto-anal mucosa-associated lymphatic tissue (RAMALT) biopsies; and a blood-based assay. To assess their impact we developed a stochastic age- and prion protein (PrP) genotype-structured model for the dynamics of scrapie within a sheep flock. Parameters were estimated in a Bayesian framework to facilitate integration of a number of disparate datasets and to allow parameter uncertainty to be incorporated in model predictions. In small flocks a control strategy based on removal of clinical cases was sufficient to control disease and more stringent measures (including the use of a live diagnostic test) did not significantly reduce outbreak size or duration. In medium or large flocks strategies in which a large proportion of animals are tested with either live diagnostic test significantly reduced outbreak size, but not always duration, compared with removal of clinical cases. However, the current Compulsory Scrapie Flocks Scheme (CSFS) significantly reduced outbreak size and duration compared with both removal of clinical cases and all strategies using a live diagnostic test. Accordingly, under the assumptions made in the present study there is little benefit from implementing a control strategy which makes use of a live diagnostic test.
    09/2013; 5(3):123-30. DOI:10.1016/j.epidem.2013.05.001

Preview (2 Sources)

Download
0 Downloads
Available from