Light Image Patterned Molecular Delivery into Live Cells Using Gold Particle Coated Substrate

Department of Electrical Engineering, University of California, Los Angeles (UCLA), 420 Westwood Plaza, 48-121 Engineering IV, Los Angeles, CA 90095-1597, USA.
Optics Express (Impact Factor: 3.53). 01/2010; 18(2):938-46. DOI: 10.1109/LEOSST.2008.4590556
Source: PubMed

ABSTRACT An image-patterned molecular delivery system for mammalian cells is demonstrated by pulsed laser irradiation of gold particles immobilized on a substrate below a cell monolayer. Patterned cavitation bubble nucleation was captured using a time-resolved imaging system and molecular delivery verified by observing the uptake of a membrane-impermeable fluorescent dye, calcein. Delivery efficiency as high as 90% was observed and multiplexed, patterned dye delivery was demonstrated. (C) 2009 Optical Society of America


Available from: Pei-Yu Chiou, May 01, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deformability while remaining viable is an important mechanical property of cells. Red blood cells (RBCs) deform considerably while flowing through small capillaries. The RBC membrane can withstand a finite strain, beyond which it ruptures. The classical yield areal strain of 2-4% for RBCs is generally accepted for a quasi-static strain. It has been noted previously that this threshold strain may be much larger with shorter exposure duration. Here we employ an impulse-like forcing to quantify this yield strain of RBC membranes. In the experiments, RBCs are stretched within tens of microseconds by a strong shear flow generated from a laser-induced cavitation bubble. The deformation of the cells in the strongly confined geometry is captured with a high-speed camera and viability is successively monitored with fluorescence microscopy. We find that the probability of cell survival is strongly dependent on the maximum strain. Above a critical areal strain of ∼40%, permanent membrane damage is observed for 50% of the cells. Interestingly, many of the cells do not rupture immediately and exhibit ghosting, but slowly obtain a round shape before they burst. This observation is explained with structural membrane damage leading to subnanometer-sized pores. The cells finally lyse from the colloidal osmotic pressure imbalance.
    Biophysical Journal 08/2013; 105(4):872-9. DOI:10.1016/j.bpj.2013.06.045 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles (AuNPs) have been established to sufficiently eradicate tumors by means of heat production for photothermal therapy. However, the translation of the AuNPs from bench to the clinic still remains to be solved until realizing high bioclearance after treatment. Herein, we developed a simple strategy for simultaneous formation and assembly of small-size gold nanoparticles (Au-SNPs) to form a novel nanocomposite in the presence of gum arabic (GA) by synchrotron X-ray irradiation in an aqueous solution within 5 min. GA, a porous polysaccharide, can not only provide a confined space in which to produce uniform Au-SNPs (1.6 ± 0.7 nm in diameter), but can also facilitate the formation of Au-SNPs@GA (diameter ≈ 40 nm) after irradiating synchrotron X-rays. Specifically, the Au-SNPs@GA possesses high thermal stability and a strong photothermal effect for killing cancer cells. Importantly, a bioclearance study demonstrated that the Au-SNPs@GA can be gradually excreted by the renal and hepatobiliary system, which might be due to the breakdown and oxidation of GA under irradiating synchrotron X-rays. Thus, the novel gold nanocomposite can be promising photothermal agents for cancer treatment at the therapeutic level, minimizing toxicity concerns regarding long-term accumulation in vivo.
    Macromolecular Bioscience 10/2013; 13(10). DOI:10.1002/mabi.201300162 · 3.65 Impact Factor
  • Source