Article

Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum.

Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA.
Nature Neuroscience (Impact Factor: 14.98). 02/2010; 13(3):287-9. DOI: 10.1038/nn.2500
Source: PubMed

ABSTRACT We found that demyelinated axons formed functional glutamatergic synapses onto adult-born NG2(+) oligodendrocyte progenitor cells (OPCs) migrating from the subventricular zone after focal demyelination of adult mice corpus callosum. This glutamatergic input was substantially reduced compared with endogenous callosal OPCs 1 week after lesion and was lost on differentiation into oligodendrocytes. Therefore, axon-oligodendrocyte progenitor synapse formation is a transient and regulated step that occurs during remyelination of callosal axons.

1 Follower
 · 
108 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuron-glial antigen 2 (NG2) is a proteoglycan expressed predominantly in oligodendrocyte progenitor cells (OPCs). NG2-expressing OPCs (NG2-OPCs) are self-renewing cells that are widely distributed in the gray and white matter areas of the central nervous system. NG2-OPCs can mature into premyelinating oligodendrocytes and myelinating oligodendroglia which serve as the primary source of myelin in the brain. This review characterizes NG2-OPCs in brain structure and function, conceptualizes the role of NG2-OPCs in brain regions associated with negative reinforcement and relapse to drug seeking and discusses how NG2-OPCs are regulated by neuromodulators linked to motivational withdrawal. We hope to provide the readers with an overview of the role of NG2-OPCs in brain structure and function in the context of negative affect state in substance abuse disorders and to integrate our current understanding of the physiological significance of the NG2-OPCs in the adult brain.
    Frontiers in Pharmacology 12/2014; 5:279. DOI:10.3389/fphar.2014.00279
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amongst neurological diseases, multiple sclerosis (MS) presents an attractive target for regenerative medicine. This is because the primary pathology, the loss of myelin-forming oligodendrocytes, can be followed by a spontaneous and efficient regenerative process called remyelination. While cell transplantation approaches have been explored as a means of replacing lost oligodendrocytes, more recently therapeutic approaches that target the endogenous regenerative process have been favored. This is in large part due to our increasing understanding of (1) the cell types within the adult brain that are able to generate new oligodendrocytes, (2) the mechanisms and pathways by which this achieved, and (3) an emerging awareness of the reasons why remyelination efficiency eventually fails. Here we review some of these advances and also highlight areas where questions remain to be answered in both the biology and translational potential of this important regenerative process. GLIA 2014;
    Glia 11/2014; 62(11). DOI:10.1002/glia.22622 · 6.03 Impact Factor