Article

Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons.

Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, Bethesda, Maryland, USA.
Nature Neuroscience (Impact Factor: 14.98). 02/2010; 13(3):302-9. DOI: 10.1038/nn.2505
Source: PubMed

ABSTRACT Extracellular factors may act on cells in two distinct modes: an acute increase in concentration as a result of regulated secretion, or a gradual increase in concentration when secreted constitutively or from a distant source. We found that cellular responses to brain-derived neurotrophic factor (BDNF) differed markedly depending on how BDNF was delivered. In cultured rat hippocampal neurons, acute and gradual increases in BDNF elicited transient and sustained activation of TrkB receptor and its downstream signaling, respectively, leading to differential expression of Homer1 and Arc. Transient TrkB activation promoted neurite elongation and spine head enlargement, whereas sustained TrkB activation facilitated neurite branch and spine neck elongation. In hippocampal slices, fast and slow increases in BDNF enhanced basal synaptic transmission and LTP, respectively. Thus, the kinetics of TrkB activation is critical for cell signaling and functions. This temporal dimension in cellular signaling may also have implications for the therapeutic drug design.

Download full-text

Full-text

Available from: Tina Tang, Jul 02, 2015
0 Followers
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenic mechanisms underlying neuropathic pain still remain largely unknown. In this study, we investigated whether spinal BDNF contributes to dorsal horn LTP induction and neuropathic pain development by activation of GluN2B-NMDA receptors via Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) phosphorylation in rats following spinal nerve ligation (SNL). We first demonstrated that spinal BDNF participates in the development of long-lasting hyperexcitability of dorsal horn WDR neurons (i.e. central sensitization) as well as pain allodynia in both intact and SNL rats. Second, we revealed that BDNF induces spinal LTP at C-fiber synapses via functional up-regulation of GluN2B-NMDA receptors in the spinal dorsal horn, and this BDNF-mediated LTP-like state is responsible for the occlusion of spinal LTP elicited by subsequent high-frequency electrical stimulation (HFS) of the sciatic nerve in SNL rats. Finally, we validated that BDNF-evoked SHP2 phosphorylation is required for subsequent GluN2B-NMDA receptors up-regulation and spinal LTP induction, and also for pain allodynia development. Blockade of SHP2 phosphorylation in the spinal dorsal horn using a potent SHP2 protein tyrosine phosphatase inhibitor NSC-87877, or knockdown of spinal SHP2 by intrathecal delivery of SHP2 siRNA, not only prevents BDNF-mediated GluN2B-NMDA receptors activation as well as spinal LTP induction and pain allodynia elicitation in intact rats, but also reduces the SNL-evoked GluN2B-NMDA receptors up-regulation and spinal LTP occlusion, and ultimately alleviates pain allodynia in neuropathic rats. Taken together, these results suggest that the BDNF/SHP2/GluN2B-NMDA signaling cascade plays a vital role in the development of central sensitization and neuropathic pain after peripheral nerve injury. Copyright © 2014 Elsevier Inc. All rights reserved.
    Neurobiology of Disease 11/2014; 73C:428-451. DOI:10.1016/j.nbd.2014.10.025 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advancing age is associated with the loss of cognitive ability and vulnerability to debilitating mental diseases. Although much is known about the development of cognitive processes in the brain, the study of the molecular mechanisms governing memory decline with aging is still in its infancy. Recently, it has become apparent that most of the human genome is transcribed into non-coding RNAs (ncRNAs) rather than protein-coding mRNAs. Multiple types of ncRNAs are enriched in the central nervous system, and this large group of molecules may regulate the molecular complexity of the brain, its neurons, and synapses. Here, we review the current knowledge on the role of ncRNAs in synaptic plasticity, learning, and memory in the broader context of the aging brain and associated memory loss. We also discuss future directions to study the role of ncRNAs in the aging process.
    Ageing research reviews 09/2014; DOI:10.1016/j.arr.2014.03.004 · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Injury to the adult nervous system promotes the expression and secretion of brain derived neurotrophic factor (BDNF). Because it promotes neuronal growth, survival and neurogenesis, BDNF may initiate compensatory processes that mitigate the deleterious effects of injury, disease or stress. Despite this, BDNF has been implicated in several injury-induced maladaptive processes including pain, spasticity and convulsive activity. This review will concentrate on the predominant role of BDNF in the initiation and maintenance of chronic and/or neuropathic pain at the spinal, peripheral and central levels. Within the spinal dorsal horn, the pattern of BDNF-induced changes in synaptic transmission across five different, identified neuronal phenotypes bears a striking resemblance to that produced by chronic constriction injury of peripheral nerves. The appearance of this "pain footprint" thus reflects multiple sensitizing actions of microglial-derived BDNF. These include changes in the chloride equilibrium potential, decreased excitatory synaptic drive to inhibitory neurons, complex changes in inhibitory (GABA/glycinergic) synaptic transmission, increases in excitatory synaptic drive to excitatory neurons and the appearance of oscillatory activity. BDNF effects are confined changes in synaptic transmission as there is little change in the passive or active properties of neurons in the superficial dorsal horn. Actions of BDNF in the brain stem and periphery also contribute to the onset and persistence of chronic pain. In spite of its role in compensatory processes that facilitate the recovery of the nervous system from injury, the widespread maladaptive actions of BDNF mean that there is literally "no gain without pain".
    Neuroscience 05/2014; 283. DOI:10.1016/j.neuroscience.2014.05.044 · 3.33 Impact Factor