Plasma membrane permeabilization by trains of ultrashort electric pulses.

Radio Frequency Radiation Branch, 711th Human Performance Wing, Air Force Research Laboratory, Brooks City Base, San Antonio, TX, United States.
Bioelectrochemistry (Amsterdam, Netherlands) (Impact Factor: 3.87). 08/2010; 79(1):114-21. DOI: 10.1016/j.bioelechem.2010.01.001
Source: PubMed

ABSTRACT Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Deltag) in individual cells. We showed that Deltag can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Deltag increased after each pulse during the course of the train.

Download full-text


Available from: Bennett L Ibey, Dec 25, 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite 30 years of research, the mechanism behind the induced breakdown of plasma membranes by electrical pulses, termed electroporation, remains unknown. Current theories treat the interaction between the electrical field and the membrane as an entirely electrical event pointing to multiple plausible mechanisms. By investigating the biophysical interaction between plasma membranes and nanosecond electrical pulses (nsEP), we may have identified a non-electric field driven mechanism, previously unstudied in nsEP, which could be responsible for nanoporation of plasma membranes. In this investigation, we use a non-contact optical technique, termed probe beam deflection technique (PBDT), to characterize acoustic shockwaves generated by nsEP traveling through tungsten wire electrodes. We conclude these acoustic shockwaves are the result of the nsEP exposure imparting electrohydraulic forces on the buffer solution. When these acoustic shockwaves occur in close proximity to lipid bilayer membranes, it is possible that they impart a sufficient amount of mechanical stress to cause poration of that membrane. This research establishes for the first time that nsEP discharged in an aqueous medium generate measureable pressure waves of a magnitude capable of mechanical deformation and possibly damage to plasma membranes. These findings provide a new insight into the longunanswered question of how electric fields cause the breakdown of plasma membranes.
    SPIE Photonics West 2014; 02/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to nanosecond pulsed electrical fields (nsPEFs) results in a myriad of observable effects in mammalian cells. While these effects are often attributed to the direct permeabilization of both the plasma and organelle membranes, the underlying mechanism(s) are not well understood. We hypothesize that nsPEF-induced membrane disturbance will initiate complex intracellular lipid signaling pathways, which ultimately lead to the observed multifarious effects. In this article, we show activation of one of these pathways - phosphoinositide signaling cascade. Here we demonstrate that nsPEF initiates phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) hydrolysis or depletion from the plasma membrane, accumulation of inositol-1,4,5-trisphosphate (IP3) in the cytoplasm and increase of diacylglycerol (DAG) on the inner surface of the plasma membrane. All of these events are initiated by a single 16.2kV/cm, 600ns pulse exposure. To further this claim, we show that the nsPEF-induced activation mirrors the response of M1-acetylcholine Gq/11-coupled metabotropic receptor (hM1). This demonstration of PIP2 hydrolysis by nsPEF exposure is an important step toward understanding the mechanisms underlying this unique stimulus for activation of lipid signaling pathways and is critical for determining the potential for nsPEFs to modulate mammalian cell functions.
    Bioelectrochemistry (Amsterdam, Netherlands) 05/2013; 94C:23-29. DOI:10.1016/j.bioelechem.2013.05.002 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Permeabilization of cell membranous structures by nanosecond pulsed electric field (nsPEF) triggers transient rise of cytosolic Ca(2+) concentration ([Ca(2+)](i)), which determines multifarious downstream effects. Using fast ratiometric Ca(2+) imaging with Fura-2, we quantified the external Ca(2+) uptake, compared it with Ca(2+) release from the endoplasmic reticulum (ER), and analyzed the interplay of these processes. We utilized CHO cells which lack voltage-gated Ca(2+) channels, so that nsPEF-induced [Ca(2+)](i) changes could be attributed primarily to electroporation. We found that a single 60-ns pulse caused fast [Ca(2+)](i) increase by Ca(2+) influx from the outside and Ca(2+) efflux from the ER, with the E-field thresholds of about 9 and 19kV/cm, respectively. Above these thresholds, the amplitude of [Ca(2+)](i) response increased linearly by 8-10 nM per 1kV/cm until a critical level between 200 and 300 nM of [Ca(2+)](i) was reached. If the critical level was reached, the nsPEF-induced Ca(2+) signal was amplified up to 3,000 nM by engaging the physiological mechanism of Ca(2+)-induced Ca(2+)-release (CICR). The amplification was prevented by depleting Ca(2+) from the ER store with 100 nM thapsigargin, as well as by blocking the ER inositol-1,4,5-trisphosphate receptors (IP(3)R) with 50μM of 2-aminoethoxydiphenyl borate (2-APB). Mobilization of [Ca(2+)](i) by nsPEF mimicked native Ca(2+) signaling, but without preceding activation of plasma membrane receptors or channels. NsPEF stimulation may serve as a unique method to activate [Ca(2+)](i) and downstream cascades while bypassing the plasma membrane receptors.
    Biochimica et Biophysica Acta 12/2012; 1828(3). DOI:10.1016/j.bbamem.2012.11.032 · 4.66 Impact Factor