Expressed protein ligation for the preparation of fusion proteins with cell penetrating peptides for endotoxin removal and intracellular delivery

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 02/2010; 1798(12):2249-57. DOI: 10.1016/j.bbamem.2010.02.003
Source: PubMed

ABSTRACT Expressed protein ligation (EPL) is a useful method for the native chemical ligation of proteins with other proteins or peptides. This study assessed the practicability of EPL in the preparation of fusion proteins of enhanced green fluorescent protein (EGFP) with chemically synthesized cell-penetrating peptides (CPPs) for intracellular delivery. Using intein-mediated purification with an affinity chitin-binding tag (IMPACT) system, the thioester of EGFP (EGFP-SR) was prepared. Optimization of the ligation of EGFP-SR with arginine 12-mer (R12) produced the fusion protein in high yield. The EPL procedure also allows the preparation of EGFP-R12 containing a low level of endotoxin (ET), via the satisfactory ET removal of EGFP-SR prior to ligation with the R12 peptide. Fusion proteins of EGFP with R12 and the d-isomer of R12 prepared by EPL showed similar levels of cellular uptake compared to the fusion protein directly expressed in Escherichiacoli.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microbial transglutaminase (MTG) from Streptomyces is naturally secreted as a zymogen (pro-MTG), which is then activated by the removal of its N-terminal pro-region by additional proteases. Inteins are protein-intervening sequences that catalyze protein splicing without cofactors. In this study, a pH-dependent Ssp DnaB mini-intein (SDB) was introduced into pro-MTG to simplify its activation process by controlling pH. The recombinant protein (pro-SDB-MTG) was obtained, and the activation process was determined to be 24 h at pH 7 in vitro. To investigate the effect of the first residue in MTG on the activity and the cleavage time, two variants, pro-SDB-MTG(D1S) and pro-SDB-MTG(ΔD1), were expressed, and the activation time was found to be 6 h and 30 h, respectively. The enzymatic property and secondary structure of the recombinant MTG and two variants were similar to those of the wild-type, indicating that the insertion of mini-intein did not affect the function of MTG. This insignificant effect was further illustrated by molecular dynamics simulations. This study revealed a controllable and effective strategy to regulate the activation process of pro-MTG mediated by a mini-intein, and it may have great potential for industrial MTG production.
    Applied and Environmental Microbiology 11/2013; DOI:10.1128/AEM.02820-13 · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications.
    Fish &amp Shellfish Immunology 04/2014; DOI:10.1016/j.fsi.2014.04.003 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Protein transduction is safer than viral vector-mediated transduction for the delivery of a therapeutic protein into a cell. Fusion proteins with an arginine-rich cell-penetrating peptide have been produced in E. coli, but the low solubility of the fusion protein expressed in E. coli impedes the large-scale production of fusion proteins from E. coli. Results Expressed protein ligation is a semisynthetic method to ligate a bacterially expressed protein with a chemically synthesized peptide. In this study, we developed expressed protein ligation-based techniques to conjugate synthetic polyarginine peptides to Cre recombinase. The conjugation efficiency of this technique was higher than 80%. Using this method, we prepared semisynthetic Cre with poly-L-arginine (ssCre-R9), poly-D-arginine (ssCre-dR9) and biotin (ssCre-dR9-biotin). We found that ssCre-R9 was delivered to the cell to a comparable level or more efficiently compared with Cre-R11 and TAT-Cre expressed as recombinant fusion proteins in E. coli. We also found that the poly-D-arginine cell-penetrating peptide was more effective than the poly-L-arginine cell-penetrating peptide for the delivery of Cre into cell. We visualized the cell transduced with ssCre-dR9-biotin using avidin-FITC. Conclusions Collectively, the results demonstrate that expressed protein ligation is an excellent technique for the production of cell-permeable Cre recombinase with polyarginine cell-penetrating peptides. In addition, this approach will extend the use of cell-permeable proteins to more sophisticated applications, such as cell imaging. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0126-z) contains supplementary material, which is available to authorized users.
    BMC Biotechnology 12/2015; 15(1). DOI:10.1186/s12896-015-0126-z · 2.59 Impact Factor


Available from