Article

Automated network analysis identifies core pathways in glioblastoma.

Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2010; 5(2):e8918. DOI: 10.1371/journal.pone.0008918
Source: PubMed

ABSTRACT Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in humans and the first cancer with comprehensive genomic profiles mapped by The Cancer Genome Atlas (TCGA) project. A central challenge in large-scale genome projects, such as the TCGA GBM project, is the ability to distinguish cancer-causing "driver" mutations from passively selected "passenger" mutations.
In contrast to a purely frequency based approach to identifying driver mutations in cancer, we propose an automated network-based approach for identifying candidate oncogenic processes and driver genes. The approach is based on the hypothesis that cellular networks contain functional modules, and that tumors target specific modules critical to their growth. Key elements in the approach include combined analysis of sequence mutations and DNA copy number alterations; use of a unified molecular interaction network consisting of both protein-protein interactions and signaling pathways; and identification and statistical assessment of network modules, i.e. cohesive groups of genes of interest with a higher density of interactions within groups than between groups.
We confirm and extend the observation that GBM alterations tend to occur within specific functional modules, in spite of considerable patient-to-patient variation, and that two of the largest modules involve signaling via p53, Rb, PI3K and receptor protein kinases. We also identify new candidate drivers in GBM, including AGAP2/CENTG1, a putative oncogene and an activator of the PI3K pathway; and, three additional significantly altered modules, including one involved in microtubule organization. To facilitate the application of our network-based approach to additional cancer types, we make the method freely available as part of a software tool called NetBox.

0 Bookmarks
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our current understanding of cancer genetics is grounded on the principle that cancer arises from a clone that has accumulated the requisite somatically acquired genetic aberrations, leading to the malignant transformation. It also results in aberrent of gene and protein expression. Next generation sequencing (NGS) or deep sequencing platforms are being used to create large catalogues of changes in copy numbers, mutations, structural variations, gene fusions, gene expression, and other types of information for cancer patients. However, inferring different types of biological changes from raw reads generated using the sequencing experiments is algorithmically and computationally challenging. In this article, we outline common steps for the quality control and processing of NGS data. We highlight the importance of accurate and application-specific alignment of these reads and the methodological steps and challenges in obtaining different types of information. We comment on the importance of integrating these data and building infrastructure to analyse it. We also provide exhaustive lists of available software to obtain information and point the readers to articles comparing software for deeper insight in specialised areas. We hope that the article will guide readers in choosing the right tools for analysing oncogenomic datasets.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process "cellular lipid metabolism" in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection.
    BMC Genomics 02/2015; 16(1):88. DOI:10.1186/s12864-015-1240-y · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stromal fibroblasts play an important role in chronic cancer-related inflammation and the development as well as progression of malignant diseases. However, the difference and relationship between inflammation-associated fibroblasts (IAFs) and cancer-associated fibroblasts (CAFs) are poorly understood. In this study, gastric cancer-associated fibroblasts (GCAFs) and their corresponding inflammation-associated fibroblasts (GIAFs) were isolated from gastric cancer (GC) with chronic gastritis and cultured in vitro. These activated fibroblasts exhibited distinct secretion and tumor-promoting behaviors in vitro. Using proteomics and bioinformatics techniques, caveolin-1 (Cav-1) was identified as a major network-centric protein of a sub-network consisting of 121 differentially expressed proteins between GIAFs and GCAFs. Furthermore, immunohistochemistry in a GC cohort showed significant difference in Cav-1 expression score between GIAFs and GCAFs and among patients with different grades of chronic gastritis. Moreover, silencing of Cav-1 in GIAFs and GCAFs using small interfering RNA increased the production of pro-inflammatory and tumor-enhancing cytokines and chemokines in conditioned mediums that elevated cell proliferation and migration when added to GC cell lines AGS and MKN45 in vitro. In addition, Cav-1 status in GIAFs and GCAFs independently predicted the prognosis of GC. Our findings indicate that Cav-1 loss contributes to the distinct activation statuses of fibroblasts in GC microenvironment and gastritis mucosa, and Cav-1 expression in both GCAFs and GIAFs may serve as a potential biomarker for GC progression.
    International journal of biological sciences 01/2015; 11(4):370-379. DOI:10.7150/ijbs.10666 · 4.37 Impact Factor

Full-text (2 Sources)

Download
78 Downloads
Available from
May 29, 2014