SIRT1 negatively regulates the mammalian target of rapamycin.

Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2010; 5(2):e9199. DOI: 10.1371/journal.pone.0009199
Source: PubMed

ABSTRACT The IGF/mTOR pathway, which is modulated by nutrients, growth factors, energy status and cellular stress regulates aging in various organisms. SIRT1 is a NAD+ dependent deacetylase that is known to regulate caloric restriction mediated longevity in model organisms, and has also been linked to the insulin/IGF signaling pathway. Here we investigated the potential regulation of mTOR signaling by SIRT1 in response to nutrients and cellular stress. We demonstrate that SIRT1 deficiency results in elevated mTOR signaling, which is not abolished by stress conditions. The SIRT1 activator resveratrol reduces, whereas SIRT1 inhibitor nicotinamide enhances mTOR activity in a SIRT1 dependent manner. Furthermore, we demonstrate that SIRT1 interacts with TSC2, a component of the mTOR inhibitory-complex upstream to mTORC1, and regulates mTOR signaling in a TSC2 dependent manner. These results demonstrate that SIRT1 negatively regulates mTOR signaling potentially through the TSC1/2 complex.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain aging is linked to certain types of neurodegenerative diseases and identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, associates with molecules and signaling pathways that sense and influence energy metabolism, autophagy, and circadian rhythms, including insulin-like growth factor 1 (IGF-1), Forkhead box O (FoxOs), sirtuins and mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the current understanding of how melatonin, together with molecular, cellular and systemic energy metabolisms, regulates epigenetic processes in the neurons. This information will lead to a greater understanding of molecular epigenetic aging of the brain and anti-aging mechanisms to increase lifespan under healthy conditions.
    International Journal of Molecular Sciences 01/2014; 15(9):16848-16884. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The prevalence of obesity is increasing worldwide and significantly affects fertility and reproduction in both men and women. Our recent study has shown that excess body fat accelerates ovarian follicle development and follicle loss in rats. The aim of the present study is to explore the effect of SIRT1 activator SRT1720 on the reserve of ovarian follicle pool and ovarian lifespan of obese mice and the underlying mechanism associated with SIRT1 and mTOR signaling.Methods Adult female Kunming mice (n = 36) were randomly divided into three groups: the normal control (NC) group (n = 8), the caloric restriction (CR) group (fed 70% food of the NC group, n = 8) and the high-fat diet (HF) group (fed a rodent chow containing 20% fat, n = 20). After 4 months, the HF mice were further randomly divided into three groups: the control high-fat diet (CHF, n = 8) group (treated every day with an intraperitoneal injection of vehicle), the SRT1720 (SRT, n = 6) group (treated every other day with an intraperitoneal injection of SRT1720 (50 mg/kg) ), the SRT1720 and nicotinamide (NAM, n = 6) group (treated every other day with an intraperitoneal injection of SRT1720 (50 mg/kg) and every day with an intraperitoneal injection of nicotinamide (100 mg/kg) ). After 6 weeks of treatment, ovaries were harvested for histological and Western blotting analyses.ResultsThe body weight, ovary weight and visceral fat in the SRT group were significantly lower than those in the CHF group at the end of treatment. Histological analysis showed that the SRT mice had significantly greater number and percentage of primordial follicles, but lower number and percentage of corpora lutea and atretic follicles than the CHF mice and NAM mice. Western blot analysis demonstrated that the levels of SIRT1, SIRT6, FOXO3a and NRF-1 protein expression significantly increased in the ovaries of SRT mice, whereas those of mTORC1, p-mTOR, p-p70S6K, NF¿B and p53 decreased compared to the CHF and NAM mice.Conclusions Our study suggests that SRT1720 may improve the follicle pool reserve in HF diet-induced obese female mice via activating SIRT1 signaling and suppressing mTOR signaling, thus extending the ovarian lifespan.
    Journal of Ovarian Research 10/2014; 7(1):97. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Very few sports use only endurance or strength. Outside of running long distances on a flat surface and power-lifting, practically all sports require some combination of endurance and strength. Endurance and strength can be developed simultaneously to some degree. However, the development of a high level of endurance seems to prohibit the development or maintenance of muscle mass and strength. This interaction between endurance and strength is called the concurrent training effect. This review specifically defines the concurrent training effect, discusses the potential molecular mechanisms underlying this effect, and proposes strategies to maximize strength and endurance in the high-level athlete.
    Sports medicine (Auckland, N.Z.). 11/2014; 44 Suppl 2:117-25.

Full-text (2 Sources)

1 Download
Available from