The essential role of LIS1, NDEL1 and Aurora-A in polarity formation and microtubule organization during neurogensis

Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Abeno, Osaka, Japan.
Cell adhesion & migration (Impact Factor: 4.51). 04/2010; 4(2):180-4. DOI: 10.4161/cam.4.2.10715
Source: PubMed


Lissencephaly is a devastating neurological disorder caused by to defective neuronal migration. LIS1 (or PAFAH1B1), the gene mutated in lissencephaly patients and its binding protein NDEL1 were found to regulate cytoplasmic dynein function and localization. LIS1 and NDEL1 also play a pivotal role on a microtubule regulation and determination of cell polarity. For example, LIS1 is required for the precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. On the other hand, NDEL1 is essential for mitotic entry as an effector molecule of Aurora-A kinase. In addition, an atypical protein kinase C (aPKC)-Aurora-A-NDEL1 pathway is critical for the regulation of microtubule organization during neurite extension. These findings suggest that physiological functions of LIS1 and NDEL1 in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. In turn, cell cycle regulators may exert other functions during neurogenesis in a direct or an indirect fashion. Thus far, only a handful of cell cycle regulators have been shown to play physiological cell cycle-independent roles in neurons. Further identification of such proteins and elucidation of their underlying mechanisms of action will likely reveal novel concepts and/or patterns that provide a clear link between their seemingly distinct cell cycle and neuronal functions.

Download full-text


Available from: Masami Yamada, Sep 10, 2015
14 Reads
  • Source
    • "Independently, other groups have found that atypical PKC activates AurA, allowing AurA to phosphorylate NDEL1 and promote microtubule remodeling during neurite extension (Mori et al., 2009). AurA has also been found to directly phos­ phorylate Par­6, which together with atypical PKC and Par­3 regulates asymmetric cell division and cell polarity (Ogawa et al., 2009; Yamada et al., 2010). These nonmitotic activities of AurA likely also contribute to deregulation of growth in tumor cells overexpressing AurA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Most studies of Aurora A (AurA) describe it as a mitotic centrosomal kinase. However, we and others have recently identified AurA functions as diverse as control of ciliary resorption, cell differentiation, and cell polarity control in interphase cells. In these activities, AurA is transiently activated by noncanonical signals, including Ca(2+)-dependent calmodulin binding. These and other observations suggested that AurA might be involved in pathological conditions, such as polycystic kidney disease (PKD). In this paper, we show that AurA is abundant in normal kidney tissue but is also abnormally expressed and activated in cells lining PKD-associated renal cysts. PKD arises from mutations in the PKD1 or PKD2 genes, encoding polycystins 1 and 2 (PC1 and PC2). AurA binds, phosphorylates, and reduces the activity of PC2, a Ca(2+)-permeable nonselective cation channel and, thus, limits the amplitude of Ca(2+) release from the endoplasmic reticulum. These and other findings suggest AurA may be a relevant new biomarker or target in the therapy of PKD.
    The Journal of Cell Biology 06/2011; 193(6):1021-32. DOI:10.1083/jcb.201012061 · 9.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The temporal and spatial control of organ-specific endoderm progenitor development is poorly understood. miRNAs affect cell function by regulating programmatic changes in protein expression levels. We show that the miR302/367 cluster is a target of the transcription factor Gata6 in mouse lung endoderm and regulates multiple aspects of early lung endoderm progenitor development. miR302/367 is expressed at early stages of lung development, but its levels decline rapidly as development proceeds. Gain- and loss-of-function studies show that altering miR302/367 expression disrupts the balance of lung endoderm progenitor proliferation and differentiation, as well as apical-basal polarity. Increased miR302/367 expression results in the formation of an undifferentiated multi-layered lung endoderm, whereas loss of miR302/367 activity results in decreased proliferation and enhanced lung endoderm differentiation. miR302/367 coordinates the balance between proliferation and differentiation, in part, through direct regulation of Rbl2 and Cdkn1a, whereas apical-basal polarity is controlled by regulation of Tiam1 and Lis1. Thus, miR302/367 directs lung endoderm development by coordinating multiple aspects of progenitor cell behavior, including proliferation, differentiation and apical-basal polarity.
    Development 02/2011; 138(7):1235-45. DOI:10.1242/dev.061762 · 6.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Axotomized neurons have the innate ability to undergo regenerative sprouting but this is often impeded by the inhibitory central nervous system environment. To gain mechanistic insights into the key molecular determinates that specifically underlie neuronal regeneration at a transcriptomic level, we have undertaken a DNA microarray study on mature cortical neuronal clusters maintained in vitro at 8, 15, 24 and 48 hrs following complete axonal severance. A total of 305 genes, each with a minimum fold change of ± 1.5 for at least one out of the four time points and which achieved statistical significance (one-way ANOVA, P < 0.05), were identified by DAVID and classified into 14 different functional clusters according to Gene Ontology. From our data, we conclude that post-injury regenerative sprouting is an intricate process that requires two distinct pathways. Firstly, it involves restructuring of the neurite cytoskeleton, determined by compound actin and microtubule dynamics, protein trafficking and concomitant modulation of both guidance cues and neurotrophic factors. Secondly, it elicits a cell survival response whereby genes are regulated to protect against oxidative stress, inflammation and cellular ion imbalance. Our data reveal that neurons have the capability to fight insults by elevating biological antioxidants, regulating secondary messengers, suppressing apoptotic genes, controlling ion-associated processes and by expressing cell cycle proteins that, in the context of neuronal injury, could potentially have functions outside their normal role in cell division. Overall, vigilant control of cell survival responses against pernicious secondary processes is vital to avoid cell death and ensure successful neurite regeneration.
    Journal of Cellular and Molecular Medicine 06/2011; 16(4):789-811. DOI:10.1111/j.1582-4934.2011.01361.x · 4.01 Impact Factor
Show more