Article

MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease.

Division of Entomology, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
International Journal of Health Geographics (Impact Factor: 2.62). 02/2010; 9:11. DOI: 10.1186/1476-072X-9-11
Source: PubMed

ABSTRACT Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk.
A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap.
MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Predicting anopheles vectors' population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns.
    International Journal of Health Geographics 05/2014; 13(1):12. · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For most of human history, populations have been relatively isolated from each other, and only recently has there been extensive contact between peoples, flora and fauna from both old and new worlds. The reach, volume and speed of modern travel are unprecedented, with human mobility increasing in high income countries by over 1000-fold since 1800. This growth is putting people at risk from the emergence of new strains of familiar diseases, and from completely new diseases, while ever more cases of the movement of both disease vectors and the diseases they carry are being seen. Pathogens and their vectors can now move further, faster and in greater numbers than ever before. Equally however, we now have access to the most detailed and comprehensive datasets on human mobility and pathogen distributions ever assembled, in order to combat these threats. This short review paper provides an overview of these datasets, with a particular focus on low income regions, and covers briefly approaches used to combine them to help us understand and control some of the negative effects of population and pathogen movements.
    International Health 01/2014; · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Dengue fever, a mosquito-borne viral infection, is a growing threat to human health in tropical and subtropical areas worldwide. There is a demand from public officials for maps that capture the current distribution of dengue and maps that analyze risk factors to predict the future burden of disease. Methods: To identify relevant articles, we searched Google Scholar, PubMed, BioMed Central, and WHOLIS (World Health Organization Library Database) for published articles with a specific set of dengue criteria between January 2002 and July 2013. Results: After evaluating the currently available dengue models, we identified four key barriers to the creation of high-quality dengue maps: (1) data limitations related to the expense of diagnosing and reporting dengue cases in places where health information systems are underdeveloped; (2) issues related to the use of socioeconomic proxies in places with limited dengue incidence data; (3) mosquito ranges which may be changing as a result of climate changes; and (4) the challenges of mapping dengue events at a variety of scales. Conclusion: An ideal dengue map will present endemic and epidemic dengue information from both rural and urban areas. Overcoming the current barriers requires expanded collaboration and data sharing by geographers, epidemiologists, and entomologists. Enhanced mapping techniques would allow for improved visualizations of dengue rates and risks.
    Pan African Medical Journal. 04/2014; 17:289.

Full-text (4 Sources)

View
21 Downloads
Available from
May 26, 2014