Cannabinoid CB(2) receptors in health and disease.

Snyder Institute of Infection, Immunity & Inflammation, Department of Physiology and Pharmacology, University of Calgary, Canada.
Current Medicinal Chemistry (Impact Factor: 3.72). 02/2010; 17(14):1393-410.
Source: PubMed

ABSTRACT Marijuana has been used for thousands of years to affect human health. Dissecting the peripheral effects from the central psychotropic effects has revealed a complex interplay between cannabinoids, endocannabinoids and their receptors. This review examines recent advances in understanding the expression, regulation and utilization of the CB(2) receptor. Here we highlight the molecular aspects of the CB(2) receptor, CB(2) receptor signaling and new ligands for this receptor. We focus in the rest of the review on recent findings in the immune system, the gastrointestinal tract and liver, the brain and the cardiovascular system and airways as examples of areas where new developments in our understanding of the CB(2) receptor have occurred. Early studies focused on expression of this receptor under baseline physiologic conditions; however, perturbations such as those that occur during inflammation, ischemia/reperfusion injury and cancer are revealing a critical role for the CB(2) receptor in regulating these disease processes amongst others. As a result, the CB(2) receptor is an appealing therapeutic target as well as a useful tool for shedding new light on physiological regulatory processes throughout the body.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic HIV-1 infection commonly affects behavioral, cognitive, and motor functions in the infected human host and is commonly referred to as HIV-1-associated neurocognitive disorders (HAND). This occurs, in measure, as a consequence of ingress of leukocytes into brain perivascular regions. Such cells facilitate viral infection and disease by eliciting blood-brain barrier and neuronal network dysfunctions. Previous works demonstrated that the endocannabinoid system modulates neuroimmunity and as such neuronal and glial functions. Herein, we investigated CB2R receptor expression in murine HIV-1 encephalitis (HIVE) and the abilities of a highly selective CB2R agonist, Gp1a, to modulate disease. HIV-1-infected human monocyte-derived macrophages were injected into the caudate and putamen of immunodeficient mice reconstituted with human peripheral blood lymphocytes (hu-PBL/HIVE). Brains of hu-PBL/HIVE mice showed microglial activation and increased expression of CB2R, but not CB1R or GPR55. Gp1a substantively reduced infiltration of human cells into the mouse brain and reduced HLA DQ activation. Gp1a down modulated CCR5 expression on human cells in the spleen with an increase in Fas ligand expression. Our results support the notion that CB2 receptor agonists may be a viable therapeutic candidate for HAND.
    Journal of Neuroimmune Pharmacology 09/2010; 5(3):456-68. · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endocannabinoids are lipid signaling molecules that act via G-coupled receptors, CB(1) and CB(2). The endocannabinoid system is capable of activation of distinct signaling pathways on demand in response to pathogenic events or stimuli, hereby enhancing cell survival and promoting tissue repair. However, the role of endocannabinoids in hematopoietic stem and progenitor cells (HSPCs) and their interaction with hematopoietic stem cells (HSC) niches is not known. HSPCs are maintained in the quiescent state in bone marrow (BM) niches by intrinsic and extrinsic signaling. We report that HSPCs express the CB(1) receptors and that BM stromal cells secrete endocannabinoids, anandamide (AEA) (35 pg/10(7) cells), and 2-AG (75.2 ng/10(7) cells). In response to the endotoxin lipopolysaccharide (LPS), elevated levels of AEA (75.6 pg/10(7) cells) and 2-AG (98.8 ng/10(7) cells) were secreted from BM stromal cells, resulting in migration and trafficking of HSPCs from the BM niches to the peripheral blood. Furthermore, administration of exogenous cannabinoid CB(1) agonists in vivo induced chemotaxis, migration, and mobilization of human and murine HSPCs. Cannabinoid receptor knock-out mice Cnr1(-/-) showed a decrease in side population (SP) cells, whereas fatty acid amide hydrolase (FAAH)(-/-) mice, which have elevated levels of AEA, yielded increased colony formation as compared with WT mice. In addition, G-CSF-induced mobilization in vivo was modulated by endocannabinoids and was inhibited by specific cannabinoid antagonists as well as impaired in cannabinoid receptor knock-out mice Cnr1(-/-), as compared with WT mice. Thus, we propose a novel function of the endocannabinoid system, as a regulator of HSPC interactions with their BM niches, where endocannabinoids are expressed in HSC niches and under stress conditions, endocannabinoid expression levels are enhanced to induce HSPC migration for proper hematopoiesis.
    Journal of Biological Chemistry 11/2010; 285(46):35471-8. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here, we report the identification and optimization of 1-(4-(pyridin-2-yl)benzyl)imidazolidine-2,4-dione derivatives as a novel chemotype with selective cannabinoid CB2 receptor agonist activity. 1 is a potent and selective cannabinoid CB2 receptor agonist (hCB2 pEC(50) = 8.6). The compound was found to be metabolically unstable, which resulted in low oral bioavailability in rat (F(po) = 4%) and possessed off-target activity at the hERG ion channel (pK(i) = 5.5). Systematic modification of physicochemical properties, such as lipophilicity and basicity, was used to optimize the pharmacokinetic profile and hERG affinity of this novel class of cannabinoid CB2 receptor agonists. This led to the identification of 44 as a potent, selective, and orally bioavailable cannabinoid CB2 receptor agonist (hCB2 pEC(50) = 8.0; hERG pK(i) < 4; F(po) = 100%), which was active in a rat spinal nerve ligation model of neuropathic pain.
    Journal of Medicinal Chemistry 09/2011; 54(20):7350-62. · 5.61 Impact Factor