Article

MyD88 adaptor-like D96N is a naturally occurring loss-of-function variant of TIRAP.

Toll-Like Receptors and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
The Journal of Immunology (Impact Factor: 5.52). 02/2010; 184(6):3025-32. DOI: 10.4049/jimmunol.0901156
Source: PubMed

ABSTRACT Signals elicited by TLRs following the detection of microbes are integrated and diversified by a group of four cytoplasmic adaptor molecules featuring an evolutionarily conserved Toll/IL-1R signaling domain. Single nucleotide polymorphisms (SNPs) in TLRs and their adaptor molecules have been shown to influence susceptibility to a range of infectious and other diseases. The adaptor MyD88 adaptor-like (Mal)/Toll/IL-1R-containing adaptor protein is involved in TLR2 and 4 signal transduction by recruiting another adaptor molecule, MyD88, to the plasma membrane. In this study, we used naturally occurring variants of Mal as tools to study the molecular biology of Mal in more detail in cellular model systems and to thereby identify functionally interesting variants whose corresponding nonsynonymous SNPs might be of further epidemiological interest. Of seven reported variants for Mal, we found Mal D96N associated with reduced NF-kappaB signaling and cytokine production after overexpression in HEK293 and Huh-7 cells. The D96N mutation prevented Mal from recruiting its signaling partner MyD88 to the plasma membrane and altered posttranslational modification of Mal. These findings led us to investigate the frequency of heterozygosity for the corresponding SNP rs8177400 in a Caucasian case-control study on the etiology of lymphoma, a disease in which TLRs have been implicated. Although rs8177400 did not modify lymphoma risk in general, its frequency of heterozygosity was accurately determined to 0.97%. Our data add rs8177400 (D96N) to the list of functionally important variants of Mal and warrant further research into its immunological, epidemiological, and diagnostic relevance.

0 Bookmarks
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A number of diseases including sepsis, rheumatoid arthritis, diabetes, cardiovascular diseases and hyperinflammatory immune disorders have been associated with Toll like receptor (TLR) 2 and TLR4. Endogenous adaptor protein known as MyD88 adapter-like protein (MAL) bind exclusively to the cytosolic portions of TLR2 and TLR4 to initiate downstream signalling. Brutons tyrosine kinase (BTK) and protein kinase C delta (PKCδ) have been implicated to phosphorylate MAL and activate it to initiate downstream signalling. BTK has been associated with phosphorylation at positions Tyr86 and Tyr106, necessary for the activation of MAL but definite residual target of PKCδ in MAL is still to be explored. To produce a better understanding of the functional domains involved in the formation of MAL-kinase complexes, computer-aided studies were used to characterize the protein-protein interactions (PPIs) of phosphorylated BTK and PKCδ with MAL. Docking and physicochemical studies indicated that BTK was involved in close contact with Tyr86 and Tyr106 of MAL whereas PKCδ may phosphorylate Tyr106 only. Moreover, the electrostatics charge distribution of binding interfaces of BTK and PKCδ were distinct but compatible with respective regions of MAL. Our results implicate that position of Tyr86 is specifically phosphorylated by BTK whereas Tyr106 can be phosphorylated by competitive action of both BTK and PKCδ. Additionally, the residues of MAL which are necessary for interaction with TLR2, TLR4, MyD88 and SOCS-1 also play their roles in maintaining interaction with kinases and can be targeted in future to reduce TLR2 and TLR4 induced pathological responses.
    Computational biology and chemistry. 04/2014; 51C:22-35.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The family of type 1 transmembrane proteins known as Toll-like receptors (TLRs) provide early immune system recognition and response to infection. In order to transmit their signal to the nucleus and initiate activation of pro-inflammatory and anti-microbial genes, TLRs must initiate a cytoplasmic signalling cascade, which is alternately controlled by 6 known signalling adaptors. These signaling adaptors are crucial for activating the correct immune response to any given TLR / pathogen interaction. This review will focus on one of those adaptors, MyD88 adaptor-like (Mal), also known as TIRAP. Mal is critical for signalling by the best studied of the TLRs, the Gram negative bacterial lipopolysaccharide (LPS) sensor, TLR4. Mal's role in TLR2 signalling in response to activation of the bacterial lipopeptide receptor, TLR2, is more contentious. Mal is a component of the so-called 'MyD88-dependent pathway' in TLR4 signalling. Recent advances in our understanding of the signalling pathways downstream of Mal highlight MyD88-indpendent roles, thus positioning Mal as multifunctional and integral for the molecular control of bacterial infections as well as inflammatory diseases. Here we describe the sequence of molecular events involved in the signalling pathways controlled by Mal, and the importance of Mal in driving host protection against a variety of bacteria, with specific attention to the evidence for Mal's role in TLR2 signalling, recent structural findings that have altered our understanding of Mal signalling, and evidence that single nucleotide polymorphisms (SNPs) of Mal are responsible for variations in population level resistance and susceptibility to bacterial infection. © 2013 IUBMB Life, 65(9):777-786, 2013.
    International Union of Biochemistry and Molecular Biology Life 09/2013; 65(9):777-86. · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human interleukin-1 receptor-associated kinase 4 (IRAK4) deficiency and myeloid differentiating factor 88 (MyD88) deficiency syndromes are two primary immune-deficiency disorders with innate immune defects. Although new genetic variations of IRAK4 and MyD88 have recently been deposited in the single nucleotide polymorphism (SNP) database, the clinical significance of these variants has not yet been established. Therefore, it is important to establish methods for assessing the association of each gene variation with human diseases. Because cell-based assays, western blotting and an NF-κB reporter gene assay, showed no difference in protein expression and NF-κB activity between R12C and wild-type IRAK4, we examined protein-protein interactions of purified recombinant IRAK4 and MyD88 proteins by analytical gel filtration and NMR titration. We found that the variant of IRAK4, R12C, as well as R20W, located in the death domain of IRAK4 and regarded as a SNP, caused a loss of interaction with MyD88. Our studies suggest that not only the loss of protein expression but also the defect of Myddosome formation could cause IRAK4 and MyD88 deficiency syndromes. Moreover a combination of in vitro functional assays is effective for confirming the pathogenicity of mutants found in IRAK4 and MyD88-deficiency patients.
    Molecular Immunology 12/2013; 58(1):66-76. · 2.65 Impact Factor

Full-text (2 Sources)

View
13 Downloads
Available from
May 22, 2014