On the mechanical stability of polymeric microcontainers functionalized with nanoparticles

Soft Matter (Impact Factor: 3.91). 12/2008; DOI: 10.1039/B812553H
Source: OAI

ABSTRACT We present key factors that influence the mechanical stability of polyelectrolyte/nanoparticle composite microcontainers and their encapsulation behavior by thermal shrinkage. Poly(diallyldimethylammonium chloride) (PDADMAC), poly(styrenesulfonate) (PSS) microshells and citrate-stabilized gold nanoparticles are used. The presence of nanoparticles in the microshell renders the encapsulation process by heat-shrinking more difficult. The encapsulation efficiency is found to decrease as the concentration of material to be encapsulated increases. Increasing nanoparticle content in the microshell or the concentration of dextran increases the likelihood of getting fused and damaged capsules during encapsulation. On the other hand, mechanical studies show that doping microshells with gold nanoparticles significantly increases their stiffness and resistance to deformation. Internalization of capsules by cells supports that the incorporation of metal nanoparticles makes the shells more resistant to deformation. This work provides information of significant interest for the potential biomedical applications of polymeric microshells such as intracellular storage and delivery.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A non-destructive way to achieve remote, reversible, light-controlled tunable permeability of ultrathin shell microcapsule is demonstrated in this study. Microcapsules based on poly{[2-(methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI) star polyelectrolyte and poly(sodium 4-styrenesulfonate) (PSS) were prepared by a layer-by-layer (LbL) technique. We demonstrated stable microcapsules with controlled permeability with the arm number of star polymer having significant effect on the assembly structure: PMETAI star with 18 arms shows a more uniform and compact assembly structure. We observed that in contrast to regular microcapsules from linear polymers, the permeability of the star polymer microcapsules could be dramatically altered by photo-induced transformation of the trivalent hexacyanocobaltate ions into a mixture of mono- and divalent ions by using UV irradiation. The reversible contraction of PMETAI star polyelectrolyte arms and the compaction of star polyelectrolytes in the presence of multivalent counterions are considered to cause the dramatic photo-induced changes in microcapsule properties observed here. Remarkably, unlike current mostly destructive approaches, the light-induced changes in microcapsule permeability are completely reversible and can be used for light-mediated loading/unloading control of microcapsules.
    ACS Nano 01/2013; 7:598-613. · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.
    Journal of Physics Condensed Matter 11/2013; 25(48):484006. · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polymer-shelled magnetic microbubbles have great potential as hybrid contrast agents for ultrasound and magnetic resonance imaging. In this work, we studied US/MRI contrast agents based on air-filled poly(vinyl alcohol)-shelled microbubbles combined with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are integrated either physically or chemically into the polymeric shell of the microbubbles (MBs). As a result, two different designs of a hybrid contrast agent are obtained. With the physical approach, SPIONs are embedded inside the polymeric shell and with the chemical approach SPIONs are covalently linked to the shell surface. The structural design of hybrid probes is important, because it strongly determines the contrast agent's response in the considered imaging methods. In particular, we were interested how structural differences affect the shell's mechanical properties, which play a key role for the MBs' US imaging performance. Therefore, we thoroughly characterized the MBs' geometric features and investigated low-frequency mechanics by using atomic force microscopy (AFM) and high-frequency mechanics by using acoustic tests. Thus, we were able to quantify the impact of the used SPIONs integration method on the shell's elastic modulus, shear modulus and shear viscosity. In summary, the suggested approach contributes to an improved understanding of structure-property relations in US-active hybrid contrast agents and thus provides the basis for their sustainable development and optimization.
    Soft Matter 11/2013; 10(1):214-26. · 3.91 Impact Factor