Identification of Peptide Ligands for Targeting to the Blood-Brain Barrier

Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands.
Pharmaceutical Research (Impact Factor: 4.74). 02/2010; 27(4):673-82. DOI: 10.1007/s11095-010-0053-6
Source: PubMed

ABSTRACT Transport of drugs to the brain is limited by the blood-brain barrier. New, specific brain endothelium ligands can facilitate brain-specific delivery of drugs.
We used phage display in an in situ brain perfusion model to screen for new brain endothelium peptide ligands.
Two phage clones, displaying 15 amino acid-peptides (GLA and GYR) that were selected for brain binding in the mouse model, showed significant binding to human brain endothelium (hCMEC/D3), compared to a random control phage. This binding was not seen for other human endothelial cells (HUVEC). Binding to hCMEC/D3 cells was dose dependent. When phage GLA and GYR were individually perfused through the murine brain, their ability to bind to the brain was 6-fold (GLA) and 5-fold (GYR) higher than the control phage. When compared to lung perfusion, phage showed an 8.5-fold (GYR) and 48-fold (GLA) preference for brain over lung compared to the control.
These results indicate that two new peptide ligands have been identified that may be used for specific targeting of drugs to the blood-brain barrier.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.
    Journal of Controlled Release 06/2014; · 7.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Personalized medicine is at the forefront of cancer diagnosis and therapy. Molecularly targeted therapies such as trastuzumab and tamoxifen have enhanced prognosis of patients with cancers expressing ERBB2 and the estrogen receptor, respectively. One obstacle to targeted therapy is the development of resistance. A targeted peptide that could distinguish resistance-susceptible cancer would aid in treatment. BT-474 human breast cancer cells can be resistant to both tamoxifen and trastuzumab, and may serve as a model for malignancies in which targeted therapy may not work. Bacteriophage (phage) display is a combinatorial technology that has been used to isolate peptides that target a specific cancer subtype. It was hypothesized that in vivo phage display could be used to select a peptide for SPECT imaging of BT-474 human breast cancer xenografts. A phage library displaying random 15 amino acid peptides was subjected to four rounds of selection, after which 14 clones were analyzed for BT-474 binding and specificity. One phage clone, 51, demonstrated superior binding and specificity, and the displayed peptide was synthesized for in vitro characterization. Peptide 51 bound specifically to BT-474 cells with an EC50 = 2.33 µM and was synthesized as a DOTA-conjugated peptide and radiolabeled with (111)In for in vitro and in vivo analysis. The radiolabeled peptide exhibited an IC50 = 16.1 nM to BT-474 cells and its biodistribution and SPECT imaging in BT-474 xenografted mice was analyzed. Although tumor uptake was moderate at 0.11% ID/g, SPECT imaging revealed a distinct tumor vasculature binding pattern. It was discovered that peptide 51 had an identical 5 amino acid N-terminal sequence to a peptide, V1, which bound to Nrp1, a tumor vasculature protein. Peptide 51 and V1 were examined for binding to target cells, and 51 bound both target and endothelial cells, while V1 only bound endothelial cells. Truncated versions of 51 did not bind BT-474 cells, demonstrating that the targeting ability of 51 was independent of the homologous V1 sequence. These results demonstrate that in vivo phage display can effectively identify a peptide that specifically targets a breast cancer cell line that is susceptible to targeted therapy resistance.
    American Journal of Nuclear Medicine and Molecular Imaging 01/2014; 4(5):435-47. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of tri[(p-carboranylmethylthio)tetrafluorophenyl]porphyrin conjugates of linear and branched polyamines, glucose, arginine, tri(ethylene glycol), and peptide Tyr-D-Arg-Phe-β-Ala (TAPA) were synthesized. These conjugates were investigated for their BBB permeability in human hCMEC/D3 brain endothelial cells as model, and their cytotoxicity and uptake in human glioma T98G cells. For comparison purposes, a symmetric tetra[(p-carboranylmethylthio)tetrafluorophenyl]porphyrin was also synthesized and its crystal structure was obtained. All porphyrin conjugates show low dark cytotoxicity (IC50 > 400 μM) and low phototoxicity (IC50>100 μM at 1.5 J/cm2) toward T98G cells. All conjugates were efficiently taken up by T98G cells, particularly the cationic polyamine and arginine conjugates, and localized in multiple cell organelles, including the mitochondria and lysosomes. All compounds showed relatively low in vitro BBB permeability compared with lucifer yellow, probably due to their higher molecular weight, hydrophobicity and tendency for aggregation in solutions. Among this series, the branched polyamine and TAPA conjugates showed the highest permeability coefficients, while the glucose conjugate showed the least.
    Journal of medicinal chemistry. 07/2014;

Full-text (2 Sources)

Available from
Jun 2, 2014