Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells.

Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2010; 5(2):e9135. DOI: 10.1371/journal.pone.0009135
Source: PubMed

ABSTRACT The familial and sporadic forms of Alzheimer's disease (AD) have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimer's disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in 'loss of function' of gamma-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit.
The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay gamma-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR) signaling-a biochemical marker of ER stress. Co-treatment of the gamma-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated gamma-secretase mediated cleavage of APP by 8-10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic alpha/gamma-cleavage.
ER stress represses gamma-secretase mediated APP proteolysis, which replicates some of the proteolytic deficits associated with the FAD mutations. The small molecular chaperone PBA can reverse ER stress induced effects upon APP proteolysis, trafficking and cellular viability. Pharmaceutical agents, such as PBA, that stimulate alpha/gamma-cleavage of APP by modifying intracellular trafficking should be explored as AD therapeutics.


Available from: James S Meabon, Jun 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-copaene (α-COP), a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and antigenotoxic features. Its cytotoxic, cytogenetic and oxidative effects have not been investigated in neuron and N2a neuroblastoma (NB) cell cultures. Therefore, we aimed to describe in vitro: (i) cytotoxic properties by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenlytetrazolium bromide test; (ii) antioxidant/oxidant activity by total antioxidant capacity (TAC) and total oxidative status (TOS) analysis; and (iii) genotoxic damage potential by single cell gel electrophoresis – of α-COP in healthy neuron and N2a-NB cell cultures for the first time. Significant (P < 0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the concentration of 150 mg/L and in N2a-NB cells starting with 100 mg/L. In addition, 25 mg/L of α-COP treatment caused increase of TAC levels and α-COP treatments at higher doses led to increase of TOS levels in neuron N2a-NB cell cultures. Moreover, none of the tested concentrations of α-COP have shown a genotoxic effect on both cell lines. Our findings clearly demonstrate that α-COP exhibited mild cytotoxic effects on N2a-NB cell line. In conclusion, α COP may have potential as an anticancer agent, which needs to be further studied.
    Biologia 03/2014; 69(7):936-942. DOI:10.2478/s11756-014-0393-5 · 0.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress plays a role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). We previously showed that manipulation of the ER-Golgi-soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (ER-Golgi SNARE) syntaxin 5 (Syx5) causes changes in Golgi morphology and the processing of AD-related proteins. To understand the pathophysiologic significance of these phenomena, we examined whether the expression of Syx5 is altered by ER stress. De novo synthesis of ER-Golgi SNARE Syx5 and Bet1 were induced by various ER stressors. Elevated expression of Syx5 and Bet1 was associated with increased levels of these proteins in vesicular components, including ER-Golgi-intermediate-compartment/vesicular tubular clusters. In addition, ER stress diminished amyloid β (Aβ) peptide secretion. Knockdown of Syx5 expression enhanced the secretion of Aβ peptides under condition without ER stress. Moreover, diminished Aβ peptide secretion resulting from ER stress was significantly reversed by Syx5 knockdown. These findings suggest that Syx5 plays important roles in β-amyloid precursor protein processing and in the ER stress response that precedes apoptotic cell death and may be involved in the crosstalk between these two pathways.
    Experimental Cell Research 01/2015; 332(1). DOI:10.1016/j.yexcr.2015.01.001 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of endoplasmic reticulum (ER) stress in cancer has been studied in detail, and ER stress is known to increase tumor cell apoptosis, and thus, reduce tumor growth. However, in our study, persistent ER stress induced by multiple administrations of low-dose thapsigargin (Tg) accelerated tumor growth in mice. Tg-mediated ER stress increased the generation of Ly6G+CD11b+ myeloid cells, but did not alter anti-tumor effector T cells. 4-Phenylbutyric acid (4-PBA), a chemical chaperone widely used as an ER stress reducer, attenuated Tg-induced myeloid-derived suppressor cell (MDSC) expansion and tumor growth. Tg-mediated ER stress enhanced the immunosuppressive capacity of tumor-infiltrating MDSCs by increasing expression of ARG1, iNOS, and NOX2, although splenic MDSCs were not affected. Consistent with these results, 4-PBA restored the anti-tumor immune response by regulating inflammatory cytokines such as TNF-α and CXCL1/KC, and activated tumor-infiltrating CD8+ T cells that were inhibited by Tg-mediated ER stress. These results suggest that significant ER stress in a tumor-bearing host might induce tumor growth mediated by enhancement of MDSC-mediated suppression. Therefore, ER stress reducers such as 4-PBA could restore anti-tumor immunity by inhibiting suppressive MDSCs that are exacerbated by ER stress.
    Oncotarget 12/2014; · 6.63 Impact Factor