GSK-3β promotes cell survival by modulating Bif-1-dependent autophagy and cell death

Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
Journal of Cell Science (Impact Factor: 5.33). 02/2010; 123(Pt 6):861-70. DOI: 10.1242/jcs.060475
Source: PubMed

ABSTRACT Glycogen synthase kinase 3 beta (GSK-3beta) is constantly active in cells and its activity increases after serum deprivation, indicating that GSK-3beta might play a major role in cell survival under serum starvation. In this study, we attempted to determine how GSK-3beta promotes cell survival after serum depletion. Under full culture conditions (10% FBS), GSK-3beta inhibition with chemical inhibitors or siRNAs failed to induce cell death in human prostate cancer cells. By contrast, under conditions of serum starvation, a profound necrotic cell death was observed as evidenced by cellular morphologic features and biochemical markers. Further analysis revealed that GSK-3beta-inhibition-induced cell death was in parallel with an extensive autophagic response. Interestingly, blocking the autophagic response switched GSK-3beta-inhibition-induced necrosis to apoptotic cell death. Finally, GSK-3beta inhibition resulted in a remarkable elevation of Bif-1 protein levels, and silencing Bif-1 expression abrogated GSK-3beta-inhibition-induced autophagic response and cell death. Taken together, our study suggests that GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagic response and cell death.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations.
    British Journal of Cancer 08/2013; 109(5). DOI:10.1038/bjc.2013.451 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous study demonstrated that tyrosine phosphorylation of p145(met)/β-subunit of hepatocyte growth factor receptor by epidermal growth factor receptor and Src contributes to the anti-apoptotic growth of human bladder carcinoma cell 5637 under serum-starved conditions. Here, we show that some other cell lines of human bladder carcinoma, but not other types of human cancer cells, also exhibit Src-dependent, anti-apoptotic proliferation under serum-starved conditions, and that low-density, detergent-insoluble membrane microdomains (MD) serve as a structural platform for signaling events involving p145(met), EGFR, and Src. As an MD-associated molecule that may contribute to bladder carcinoma-specific cellular function, we identified uroplakin IIIa (UPIIIa), an urothelium-specific protein. Results obtained so far revealed: 1) UPIIIa undergoes partial proteolysis in serum-starved cells; 2) a specific antibody to the extracellular domain of UPIIIa inhibits the proteolysis of UPIIIa and the activation of Src, and promotes apoptosis in serum-starved cells; and 3) knockdown of UPIIIa by short interfering RNA also promotes apoptosis in serum-starved cells. GM6001, a potent inhibitor of matrix metalloproteinase (MMP), inhibits the proteolysis of UPIIIa and promotes apoptosis in serum-starved cells. Furthermore, serum starvation promotes expression and secretion of the heparin-binding EGF-like growth factor in a manner that depends on the functions of MMP, Src, and UPIIIa. These results highlight a hitherto unknown signaling network involving a subset of MD-associated molecules in the anti-apoptotic mechanisms of human bladder carcinoma cells.
    10/2012; 1(10):1024-34. DOI:10.1242/bio.20121115
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-tyrosine phosphorylation, which is catalyzed by protein-tyrosine kinase (PTK), plays a pivotal role in a variety of cellular functions related to health and disease. The discovery of the viral oncogene Src (v-Src) and its cellular nontransforming counterpart (c-Src), as the first example of PTK, has opened a window to study the relationship between protein-tyrosine phosphorylation and the biology and medicine of cancer. In this paper, we focus on the roles played by Src and other PTKs in cancer cell-specific behavior, that is, evasion of apoptosis or cell death under stressful extracellular and/or intracellular microenvironments (i.e., hypoxia, anoikis, hypoglycemia, and serum deprivation).
    09/2012; 2012:483796. DOI:10.1155/2012/483796