Article

Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase.

Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University Medical School, Nagoya 467-8601, Japan.
Genes & development (Impact Factor: 12.64). 02/2010; 24(4):333-8. DOI: 10.1101/gad.1863810
Source: PubMed

ABSTRACT A balanced deoxyribonucleotide (dNTP) supply is essential for DNA repair. Here, we found that ribonucleotide reductase (RNR) subunits RRM1 and RRM2 accumulated very rapidly at damage sites. RRM1 bound physically to Tip60. Chromatin immunoprecipitation analyses of cells with an I-SceI cassette revealed that RRM1 bound to a damage site in a Tip60-dependent manner. Active RRM1 mutants lacking Tip60 binding failed to rescue an impaired DNA repair in RRM1-depleted G1-phase cells. Inhibition of RNR recruitment by an RRM1 C-terminal fragment sensitized cells to DNA damage. We propose that Tip60-dependent recruitment of RNR plays an essential role in dNTP supply for DNA repair.

0 Followers
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tat-interactive protein 60 (Tip60) is a MYST histone acetyltransferase that catalyses acetylation of the major DNA damage kinase Ataxia telangiectasia mutated (ATM), thereby triggering cellular signalling required for the maintenance of genomic stability on genotoxic insults. The Tip60 activity is modulated by post-translational modifications that alter its stability and its interactions with substrates. Here we report that activating transcription factor 3 (ATF3), a common stress mediator and a p53 activator, is a regulator of Tip60. ATF3 directly binds Tip60 at a region adjacent to the catalytic domain to promote the protein acetyltransferase activity. Moreover, the ATF3-Tip60 interaction increases the Tip60 stability by promoting USP7-mediated deubiquitination of Tip60. Consequently, knockdown of ATF3 expression leads to decreased Tip60 expression and suppression of ATM signalling as evidenced by accumulated DNA lesions and increased cell sensitivity to irradiation. Our findings thus reveal a previously unknown function of a common stress mediator in regulating Tip60 function.
    Nature Communications 04/2015; 6:6752. DOI:10.1038/ncomms7752 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genotoxic drugs constitute a major treatment modality for human cancers; however, cancer cells' intrinsic DNA repair capability often increases the threshold of lethality and renders these drugs ineffective. The emerging roles of HDACs in DNA repair provide new opportunities for improving traditional genotoxic drugs. Here, we report the development and characterization of CY190602, a novel bendamustine-derived drug with significantly enhanced anticancer potency. We show that CY190602's enhanced potency can be attributed to its newly gained ability to inhibit HDACs. Using this novel DNA/HDAC dual-targeting drug as a tool, we further explored HDAC's role in DNA repair. We found that HDAC activities are essential for the expression of several genes involved in DNA synthesis and repair, including TYMS, Tip60, CBP, EP300, and MSL1. Importantly, CY190602, the first-in-class example of such DNA/HDAC dual-targeting drugs, exhibited significantly enhanced anticancer activity in vitro and in vivo. These findings provide rationales for incorporating HDAC inhibitory moieties into genotoxic drugs, so as to overcome the repair capacity of cancer cells. Systematic development of similar DNA/HDAC dual-targeting drugs may represent a novel opportunity for improving cancer therapy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
    EMBO Molecular Medicine 03/2015; 7(4). DOI:10.15252/emmm.201404580 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fanconi's anemia (FA) is a recessive disease; 16 genes are currently recognized in FA. FA proteins participate in the FA/BRCA pathway that plays a crucial role in the repair of DNA damage induced by crosslinking compounds. Hydroxyurea (HU) is an agent that induces replicative stress by inhibiting ribonucleotide reductase (RNR), which synthesizes deoxyribonucleotide triphosphates (dNTPs) necessary for DNA replication and repair. HU is known to activate the FA pathway; however, its clastogenic effects are not well characterized. We have investigated the effects of HU treatment alone or in sequential combination with mitomycin-C (MMC) on FA patient-derived lymphoblastoid cell lines from groups FA-A, B, C, D1/BRCA2, and E and on lymphocytes from two unclassified FA patients. All FA cells showed a significant increase (P < 0.05) in chromosomal aberrations following treatment with HU during the last 3 h before mitosis. Furthermore, when FA cells previously exposed to MMC were treated with HU, we observed an increase of MMC-induced DNA damage that was characterized by high occurrence of DNA breaks and a reduction in rejoined chromosomal aberrations. These findings show that exposure to HU during G2 induces chromosomal aberrations by a mechanism that is independent of its well-known role in replication fork stalling during S-phase and that HU interfered mainly with the rejoining process of DNA damage. We suggest that impaired oxidative stress response, lack of an adequate amount of dNTPs for DNA repair due to RNR inhibition, and interference with cell cycle control checkpoints underlie the clastogenic activity of HU in FA cells. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 02/2015; DOI:10.1002/em.21938 · 2.55 Impact Factor

Preview

Download
0 Downloads
Available from