Article

Reduced functional connectivity in a right-hemisphere network for volitional ocular motor control in schizophrenia

Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei 112, Taiwan.
Brain (Impact Factor: 10.23). 02/2010; 133(Pt 2):625-37. DOI: 10.1093/brain/awp317
Source: PubMed

ABSTRACT Patients with schizophrenia consistently show deficient performance on tasks requiring volitional saccades. We previously reported reduced fractional anisotropy in the white matter underlying right dorsal anterior cingulate cortex in schizophrenia, which, along with lower fractional anisotropy in the right frontal eye field and posterior parietal cortex, predicted longer latencies of volitional saccades. This suggests that reduced microstructural integrity of dorsal anterior cingulate cortex white matter disrupts connectivity in the right hemisphere-dominant network for spatial attention and volitional ocular motor control. To test this hypothesis, we examined functional connectivity of the cingulate eye field component of this network, which is located in dorsal anterior cingulate cortex, during a task comprising volitional prosaccades and antisaccades. In patients with schizophrenia, we expected to find reduced functional connectivity, specifically in the right hemisphere, which predicted prolonged saccadic latency. Twenty-seven medicated schizophrenia outpatients and 21 demographically matched healthy controls performed volitional saccades during functional magnetic resonance imaging. Based on task-related activation, seed regions in the right and left cingulate eye field were defined. In both groups, the right and left cingulate eye field showed positive correlations with the ocular motor network and negative correlations with the default network. Patients showed reduced positive functional connectivity of the cingulate eye field, specifically in the right hemisphere. Negative functional connectivity of the right cingulate eye field predicted faster saccades, but these relations differed by group, and were only present in controls. This pattern of relations suggests that the coordination of activity between ocular motor and default networks is important for efficient task performance and is disrupted in schizophrenia. Along with prior observations of reduced white matter microstructural integrity (fractional anisotropy) in schizophrenia, the present finding of reduced functional connectivity suggests that functional and structural abnormalities of the right cingulate eye field disrupt connectivity in the network for spatial attention and volitional ocular motor control. These abnormalities may contribute to deficits in overcoming prepotency in the service of directing eye gaze and attention to the parts of the environment that are the most behaviourally relevant.

Download full-text

Full-text

Available from: Dara S Manoach, Jan 12, 2015
0 Followers
 · 
117 Views
  • Source
    • "In addition, we examined whether learning during training affected resting state functional connectivity by correlating it with motor network connectivity changes in the post-pre MST rest scans and with connectivity in the post-MST rest scan alone. To determine whether functional connectivity with the seed during the MST scan correlated with next-day improvement, we performed the same fcMRI analysis on the MST scan as for the rest scans, as we have done in prior studies examining connectivity during task performance (Agam et al., 2010, 2011; Tu et al., 2010). In this analysis the correlations derive from a combination of task-evoked and spontaneous activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is ongoing debate concerning the functions of resting-state brain activity. Prior work demonstrates that memory encoding enhances subsequent resting-state functional connectivity within task-relevant networks and that these changes predict better recognition. Here, we used functional connectivity MRI (fcMRI) to examine whether task-induced changes in resting-state connectivity correlate with performance improvement after sleep. In two separate sessions, resting-state scans were acquired before and after participants performed a motor task. In one session participants trained on the motor sequence task (MST), a well-established probe of sleep-dependent memory consolidation, and were tested the next day, after a night of sleep. In the other session they performed a motor control task (MCT) that minimized learning. In an accompanying behavioral control study, participants trained on the MST and were tested after either a night of sleep or an equivalent interval of daytime wake. Both the fcMRI and the sleep control groups showed significant improvement of MST performance, while the wake control group did not. In the fcMRI group, increased connectivity in bilateral motor cortex following MST training correlated with this next-day improvement. This increased connectivity did not appear to reflect initial learning since it did not correlate with learning during training and was not greater after MST training than MCT performance. Instead, we hypothesize that this increased connectivity processed the new memories for sleep-dependent consolidation. Our findings demonstrate that physiological processes immediately after learning correlate with sleep-dependent performance improvement and suggest that the wakeful resting brain prepares memories of recent experiences for later consolidation during sleep.
    NeuroImage 08/2014; 102. DOI:10.1016/j.neuroimage.2014.08.044 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have designed and implemented a set of highly efficient and highly scalable algorithms for an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed performance analysis of systematic runs on up to 512-nodes of an Intel Paragon. The preconditioned Conjugate Gradient solver achieves a sustained 18 Gflops performance. Consequently, we achieve an unprecedented 100-fold reduction in time to solution on the Intel Paragon over a single head of a Cray C90. This not only exceeds the daily performance requirement of the Data Assimilation Office at NASA's Goddard Space Flight Center, but also makes it possible to explore much larger and challenging data assimilation problems which are unthinkable on a traditional computer platform such as the Cray C90.
    Supercomputing, 1996. Proceedings of the 1996 ACM/IEEE Conference on; 02/1996
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The periaqueductal gray (PAG) is known to play a crucial role in pain modulation and has shown a strong interaction with anterior cingulate cortex in previous functional imaging studies. We investigated the intrinsic functional connectivity of PAG using resting fMRI data from 100 subjects. The results showed that PAG is functionally connected to ACC (rostral and pregenual ACC) and also rostral ventromedial medulla (RVM), forming a core ACC-PAG-RVM network for pain modulation even no pain stimulus is applied. The comparison between genders showed that for the contrast of female minus male, significant difference was observed at mid-cingulate cortex; for the contrast of male minus female, significant differences were observed at left medial orbital prefrontal cortex, and uncus; right insula/operculum and prefrontal cortex. We believe eluciation of this intrinsic PAG network during the resting state will enhance our physiological and pathological understandings of the development and maintenance of chronic pain states.
    Behavioural brain research 03/2010; 211(2):215-9. DOI:10.1016/j.bbr.2010.03.042 · 3.39 Impact Factor
Show more