Article

The role of mitochondria in the pathogenesis of type 2 diabetes.

Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA.
Endocrine reviews (Impact Factor: 19.76). 02/2010; 31(3):364-95. DOI: 10.1210/er.2009-0027
Source: PubMed

ABSTRACT The pathophysiology of type 2 diabetes mellitus (DM) is varied and complex. However, the association of DM with obesity and inactivity indicates an important, and potentially pathogenic, link between fuel and energy homeostasis and the emergence of metabolic disease. Given the central role for mitochondria in fuel utilization and energy production, disordered mitochondrial function at the cellular level can impact whole-body metabolic homeostasis. Thus, the hypothesis that defective or insufficient mitochondrial function might play a potentially pathogenic role in mediating risk of type 2 DM has emerged in recent years. Here, we summarize current literature on risk factors for diabetes pathogenesis, on the specific role(s) of mitochondria in tissues involved in its pathophysiology, and on evidence pointing to alterations in mitochondrial function in these tissues that could contribute to the development of DM. We also review literature on metabolic phenotypes of existing animal models of impaired mitochondrial function. We conclude that, whereas the association between impaired mitochondrial function and DM is strong, a causal pathogenic relationship remains uncertain. However, we hypothesize that genetically determined and/or inactivity-mediated alterations in mitochondrial oxidative activity may directly impact adaptive responses to overnutrition, causing an imbalance between oxidative activity and nutrient load. This imbalance may lead in turn to chronic accumulation of lipid oxidative metabolites that can mediate insulin resistance and secretory dysfunction. More refined experimental strategies that accurately mimic potential reductions in mitochondrial functional capacity in humans at risk for diabetes will be required to determine the potential pathogenic role in human insulin resistance and type 2 DM.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.
    Nature Medicine 11/2014; · 28.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pendahuluan Gangguan endokrin termasuk penyakit yang tidak menular (non-communicable disease/NCD) yang kian meningkat di berbagai negara di dunia dalam beberapa dekade belakangan ini. Sejak 2011, diabetes termasuk salah satu NCD yang dipromosikan sebagai prioritas kesehatan global, bersama-sama dengan gangguan kardiovaskuler, chronic respiratory diseases, dan kanker, dengan empat faktor risiko pemicunya yaitu rokok, diet tak sehat, kurangnya olah-raga, dan konsumsi alkohol [1]. Dasarnya adalah jumlah dan penyebaran kasus klinis dan kematian NCD telah mengglobal, faktor risiko utama adalah tingkah laku, serta kasus kematian tinggi terjadi negara-negara dengan pendapatan menengah ke bawah [1]. Seperti untuk NCD yang lain, kemajuan dalam teknologi riset medis seyogyanya memberikan cara pandang baru tentang patogenesis gangguan endokrin, sehingga modalitas untuk pencegahan dan pengobatan dapat lebih tepat sasaran. Dengan penerapan teknologi modern, penanganan setiap kasus klinis dapat sangat unik bagi individu yang bersangkutan. Teknologi modern membuat kedokteran umum menjadi kedokteran pribadi (personalized medicine) [2-4]. . Tulisan ini membahas informasi singkat tentang biologi molekuler dan teknologi mutakhir yang tersedia, dan regulasi gen baik secara genetik maupun epigenetik, serta merekontruksi sintesis dan aksi hormon secara umum untuk dapat menjadi kerangka berpikir kajian gangguan endokrin dalam patogenesis maupun disain obat baru. Endokrinologi molekuler Salah satu basis utama riset medis modern adalah biologi molekuler, yaitu cabang biologi yang mempelajari makromolekul DNA, RNA, dan protein, serta interaksi ketiga molekul itu pada sel, jaringan, dan individu. Beberapa tonggak penting dalam kajian biologi molekuler modern adalah polymerase chain reaction (PCR), DNA sequencing, next-generation sequencing, dan system biology approach. PCR
    Bali Endocrine Update, Sanur, Bali; 03/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the metabolic factors that contribute to energy metabolism (EM) is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate (RMR) and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1), which was the first in this family to be discovered, the reactions catalyzed by its homolog UCP3 and the physiological role remain under debate. This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.
    Frontiers in physiology. 01/2015; 6:36.