Article

Functional consequences of sarcopenia and dynapenia in the elderly

Institute for Neuromusculoskeletal Research, Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA.
Current opinion in clinical nutrition and metabolic care 02/2010; 13(3):271-6. DOI: 10.1097/MCO.0b013e328337819e
Source: PubMed

ABSTRACT The economic burden due to the sequela of sarcopenia (muscle wasting in the elderly) are staggering and rank similarly to the costs associated with osteoporotic fractures. In this article, we discuss the societal burden and determinants of the loss of physical function with advancing age, the physiologic mechanisms underlying dynapenia (muscle weakness in the elderly), and provide perspectives on related critical issues to be addressed.
Recent epidemiological findings from longitudinal aging studies suggest that dynapenia is highly associated with both mortality and physical disability even when adjusting for sarcopenia indicating that sarcopenia may be secondary to the effects of dynapenia. These findings are consistent with the physiologic underpinnings of muscle strength, as recent evidence demonstrates that alterations in muscle quantity, contractile quality and neural activation all collectively contribute to dynapenia.
Although muscle mass is essential for regulation of whole body metabolic balance, overall neuromuscular function seems to be a critical factor for maintaining muscle strength and physical independence in the elderly. The relative contribution of physiologic factors contributing to muscle weakness are not fully understood and further research is needed to better elucidate these mechanisms between muscle groups and across populations.

1 Follower
 · 
105 Views
  • Source
    • "Sarcopenia commonly affects older people and is characterized by loss of both muscle mass and strength [1] [2]. Sarcopenia is associated with disability, a loss of independence, and reduced quality of life [3]. In one American study, sarcopenia and its consequences were estimated to cost the US healthcare system US$18 billion [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Sarcopenia is the presence of low muscle mass and low muscle function. The aim of this study was to establish cutoffs for low muscle mass using three published methods and to compare the prevalence of sarcopenia in older Australians. Methods. Gender specific cutoffs levels were identified for low muscle mass using three different methods. Low grip strength was determined using established cutoffs of <30 kg for men and <20 kg for women to estimate the prevalence of sarcopenia. Results. Gender specific cutoffs levels for low muscle mass identified were (a) <6.89 kg/m(2) for men and <4.32 kg/m(2) for women, <2 standard deviation (SD) of a young reference population; (b) <7.36 kg/m(2) for men and <5.81 kg/m(2) for women from the lowest 20% percentile of the older group; and (c) <-2.15 for men and <-1.42 for women from the lowest 20% of the residuals of linear regressions of appendicular skeletal mass, adjusted for fat mass and height. Prevalence of sarcopenia in older (65 years and older) people by these three methods for men was 2.5%, 6.2%, and 6.4% and for women 0.3%, 9.3%, and 8.5%, respectively. Conclusions. Sarcopenia is common but consensus on the best method to confirm low muscle mass is required.
    BioMed Research International 07/2014; 2014:361790. DOI:10.1155/2014/361790 · 2.71 Impact Factor
  • Source
    • "Understanding the potential reason(s) for decline in function is a challenging undertaking, however, as there are numerous variables that can, either singularly or in combination, affect physiological function in the aging adult. For example, factors related to (but not limited to) biological, behavioral, socioeconomic, nutritional, and/or lifestyle/career choices can all impact on the general process of aging and have implications for physiological function [14] [15] [16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is characterized by a general decline in physiological and behavioral function that has been widely interpreted within the context of the loss of complexity hypothesis. In this paper, we examine the relation between aging, neuromuscular function and physiological-behavioral complexity in the arm-hand effector system, specifically with reference to physiological tremor and isometric force production. Experimental findings reveal that the adaptive behavioral consequences of the aging-related functional decline in neurophysiological processes are less pronounced in simple motor tasks which provides support for the proposition that the motor output is influenced by both extrinsic (e.g., task related) and intrinsic (e.g., coordination, weakness) factors. Moreover, the aging-related change in complexity can be bidirectional (increase or decrease) according to the influence of task constraints on the adaptation required of the intrinsic properties of the effector system.
    Journal of aging research 08/2012; 2012:891218. DOI:10.1155/2012/891218
  • Source
    • "Some reject this use because it implies a proportionality between loss of muscle bulk and loss of strength which, as discussed below, is not the case as with aging the decline in strength exceeds that of muscle size (Narici and Maffulli, 2010). The term dynapenia has been proposed to refer to the functional compromise of the entire neuromuscular apparatus (Clark and Manini, 2008) and although there is good evidence that this concept is of clinical significance (Clark and Manini, 2010) the term is yet to achieve widespread usage. Some writers argue against the separation of dynapenia and sarcopenia due to the risk of nomenclature introducing confusion (Cruz-Jentoft et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18-45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64-0.70% per year in women and 0.80-00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3-4% per year in men and 2.5-3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2-5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass.
    Frontiers in Physiology 07/2012; 3:260. DOI:10.3389/fphys.2012.00260 · 3.50 Impact Factor
Show more