Effects of eccentric and concentric training on capillarization and myosin heavy chain contents in rat skeletal muscles after hindlimb suspension.

Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, Ribeirão Preto School of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil.
Acta histochemica (Impact Factor: 1.61). 02/2010; 113(3):277-82. DOI: 10.1016/j.acthis.2009.10.009
Source: PubMed

ABSTRACT We studied the effects of different protocols of post-disuse rehabilitation on angiogenesis and myosin heavy chain (MHC) content in rat hindlimb muscles after caudal suspension. Thirty female Wistar rats were divided into five groups: (1) Control I, (2) Control II, (3) Suspended, (4) Suspended trained on declined treadmill, and (5) Suspended trained on flat treadmill. Fragments of the soleus and tibialis anterior (TA) muscles were frozen and processed by electrophoresis and immunohistochemistry (CD31 antibody). Hindlimb suspension caused reduction of capillary/fiber (C/F) ratios and contents of MHC type I (MHCI) in the soleus in parallel to increased capillary density. Flat treadmill protocols increased the content of the MHCI isoform. The C/F ratio was increased by concentric training after hypokinesis, but was not modified by eccentric training, which caused a greater reduction of capillary density compared to the other protocols. In the TA muscle, hindlimb suspension caused a non-significant increase in capillary density and C/F ratio with limited changes in MHC. The present data demonstrate that the different training protocols adopted and the functional performance of the muscles analyzed caused specific changes in capillarization and in the content of the various MHC types.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated how different types of remobilization after hind limb immobilization, eccentric exercise and passive static stretching, influenced the adaptive responses of muscles with similar function and fascicle size, but differing in their contractile characteristics. Female Wistar weanling rats (21 days old) were divided into 8 groups: immobilized for 10 days, maintaining the ankle in maximum plantar flexion; immobilized and submitted to eccentric training for 10 or 21 days on a declining treadmill for 40min; immobilized and submitted to passive stretching for 10 or 21 days for 40min by maintaining the ankle in maximum dorsiflexion; control of immobilized; and control of 10 or 21 days. The soleus and plantaris muscles were analyzed using fiber distribution, lesser diameter, capillary/fiber ratio, and morphology. Results showed that the immobilization reduced the diameter of all fiber types, caused changes in fiber distribution and decreased the number of transverse capillaries in both muscles. The recovery period of the soleus muscle is longer than that of the plantaris after detraining. Moreover, eccentric training induced greater hypertrophic and angiogenic responses than passive stretching, especially after 21 days of rehabilitation. Both techniques demonstrated positive effects for muscle rehabilitation with the eccentric exercise being more effective.
    Acta histochemica 12/2013; · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eccentric exercise is an essential resource for skeletal muscle rehabilitation following muscle disuse however, abnormalities linked to the tissue recuperation require further research. Our aim was analyze the adaptation ability of rehabilitated muscular tissue in rats during different periods of eccentric training after 10 days of limb immobilization. Twenty-seven Wistar rats were divided into six groups: immobilized 10 days, immobilized and eccentric trained for 10 days, immobilized and eccentric trained for 21 days, and three age-matched control groups. After sacrifice, soleus and plantaris muscles were frozen, cut and stained for general histology using hematoxylin and eosin and Gomori trichrome methods and immunohistochemical methods for fiber typing (mATPase, NADH2-TR), for capillaries (CD31) and intermediate filaments (desmin, vimentin) and high resolution microscopy of resin embedded material. Immobilization resulted in more intense morphological alterations in soleus muscles such as formation of target fibers, nuclear centralization, a reduction in the number of type I fibers, diameter of type I, IIA, IIAD fibers, and capillaries. After 10 days of eccentric training, increases in the nuclear centralization and the number of lobulated fibers were observed. This period was insufficient to reestablish the capillary/fiber (C/F) ratio and distribution of fiber types as that observed in the control group. However, 21 days of rehabilitation allowed the reversal of all morphological and quantitative abnormalities. For the plantaris muscles, 10-days of training restored their basic characteristics. Despite the fact that immobilization affected soleus and plantaris muscles, 10 days of eccentric training was insufficient to restore the morphological characteristics of soleus muscles, which was not the case observed in plantaris muscle.
    Acta Histochemica 07/2014; · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC) isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neutrophin-3 (NT-3) in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD) rats were randomly divided into three groups: Control group (Con, n = 8), moderate-intensity aerobic exercise group (M-Ex, n = 8) and high-intensity aerobic exercise group (H-Ex, n = 8). We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01), while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01). In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01), with a more pronounced upregulation in the M-Ex group (p < 0.05). Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01), with the most significant increase in the H-Ex group (p < 0.01). In the rat soleus muscle, (1) CaN-NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2) Neurotrophins NGF, BDNF and NT-3 might play a role in the conversion of MyHC II isoform in response to high-intensity treadmill exercise. Key pointsEight weeks of moderate-intensity treadmill training induces the transformation MyHC IIA and MyHC IIB to MyHC IIX and MyHC I in the soleus muscles, while high-intensity exercise leads to transformation of MyHC IIX to MyHC IIA, MyHC IIB and MyHC I.MyHC I conversion in response to moderate-intensity aerobic exercise is mediated by calcineurin-NFATcl signaling.Eight weeks of moderate- and high-ntensity aerobic exercise induces the expression of NGF, BDNF and NT-3 in expression noted in rats subjected to high-intensity training. NGF and NT-3 expression in the striatum is lower than in the soleus muscle, while BDNF levels are similar. Neurotrophins may be involved in mediating MyHC II conversion in response to high-intensity aerobic exercise.
    Journal of sports science & medicine. 12/2014; 13(4):934-944.


Available from
May 20, 2014